Def: An **isometry** of *n*-dimensional space \mathbb{R}^n is a function from \mathbb{R}^n onto \mathbb{R}^n that preserves distance.

Def: Let F be a set of points in \mathbb{R}^n . The **symmetry group of** F in \mathbb{R}^n is the set of all isometries of \mathbb{R}^n that carry F onto itself. The group operation is function composition.

December 2, 2002

QUESTIONS ABOUT SYMMETRY

1. What kind of symmetries are there?

In \mathbb{R}^2 , there are four types of isometries:

- (a) Rotation about a point (the *center* of the rotation)
- (b) Reflection across a line (the axis of reflection)
- (c) Translation (determined by a translation vector)
- (d) Glide Reflection (translation combined with reflection across an axis parallel to the translation vector)

2. What exactly do we mean by a symmetry anyway?

The symmetries of an object F are those **isometries** that map F to itself.

Recall: An isometry of n-dimensional space \mathbb{R}^n is a function from \mathbb{R}^n onto \mathbb{R}^n that preserves distance.

3. Does the set of symmetries of an object always form a group?

Yes!

4. What kinds of groups can be the set of symmetries for some object? Is there some object out there whose set of symmetries is (isomorphic to) $GL(2,\mathbb{R})$? Or A_5 ?

1	T	1	, 1 , •		• , , •	•
Ι.	Rotation	and	translation	are	orientation-	preserving.
						L - 1 2 1 O .

2. Reflection and glide-reflection are orientation-reversing, or opposite.

December 2, 2002

November 22, 2002