Definition: A subgroup H of a group G is a **normal subgroup** iff aH = Ha for all $a \in G$. We denote a normal subgroup by $H \triangleleft G$.

Theorem 9.1: A subgroup $H \leq G$ is normal \iff $(x)^{-1}Hx \subseteq H$ for all $x \in G$.

November 13, 2002

Let $H = \{\epsilon, \begin{bmatrix} 1 & 2 & 3 \end{bmatrix}, \begin{bmatrix} 1 & 3 & 2 \end{bmatrix}\}$. We've seen that $H \triangleleft S_3$. We let

$$S_{H} = \text{ the set of all left cosets of } H \text{ in } S_{3}$$
$$= \{ \alpha H | \alpha \in S_{3} \}$$
$$= \{ H, \begin{bmatrix} 1 & 2 \end{bmatrix} H \},$$

and we defined an operation * on the elements of the set S_H as follows: For any $\alpha H, \beta H \in S_H$,

$$\alpha H * \beta H \stackrel{def}{=} (\alpha \circ \beta) H.$$

We saw that if $\alpha_1 H = \alpha_2 H$ and $\beta_1 H = \beta_2 H$, then $\alpha_1 H * \beta_1 H = \alpha_2 H * \beta_2 H$. This shows that the operation * is *well-defined*. Let $K = \{\epsilon, \begin{bmatrix} 1 & 2 \end{bmatrix}\}$. We've seen that $K \not \bowtie S_3$. We let

$$S_{K} = \text{ the set of all left cosets of } K \text{ in } S_{3}$$
$$= \{ \alpha K | \alpha \in S_{3} \}$$
$$= \{ K, \begin{bmatrix} 1 & 3 \end{bmatrix} K, \begin{bmatrix} 2 & 3 \end{bmatrix} K \}.$$

If we use the same idea as before to define an operation * on the elements of the set S_K : For any $\alpha K, \beta K \in S_K$, define

$$\alpha K * \beta K \stackrel{def}{=} (\alpha \circ \beta) K,$$

then it turns out that * is *not* well-defined on S_K . For although

$$\begin{bmatrix} 1 & 3 \end{bmatrix} K = \begin{bmatrix} 1 & 2 & 3 \end{bmatrix} K$$
 and $\begin{bmatrix} 2 & 3 \end{bmatrix} K = \begin{bmatrix} 1 & 3 & 2 \end{bmatrix} K$,

it is not true that $\begin{bmatrix} 1 & 3 \end{bmatrix} K * \begin{bmatrix} 2 & 3 \end{bmatrix} K = \begin{bmatrix} 1 & 2 & 3 \end{bmatrix} K * \begin{bmatrix} 1 & 3 & 2 \end{bmatrix} K.$