Definition: A subgroup H of a group G is a **normal subgroup** iff aH = Ha for all $a \in G$. We denote a normal subgroup by $H \triangleleft G$.

Theorem 9.1: A subgroup $H \leq G$ is normal \iff $(x)^{-1}Hx \subseteq H$ for all $x \in G$.

Theorem 9.2:

Let $H \triangleleft G$. The set $G/H = \{aH | a \in G\}$ forms a group under the operation $(aH) * (bH) = (a \circ b)H$, where \circ denotes the group operation in G. G/H is called the **factor group** or **quotient group**.

November 15, 2002

Let a be an element of order 24, and consider $G = \langle a \rangle = \{e, a, a^2, a^3, \dots, a^{22}, a^{24}\}$. Clearly, $H = \langle a^6 \rangle$ is a subgroup of G.

- 1. How do you know G/H is a group?
- 2. What is |G/H|?
- 3. List the elements of G/H.
- 4. What is another way of writing $a^{14}H$?
- 5. What is $a^3H * a^5H$?
- 6. What is the order of $a^2 H$?

November 15, 2002

Let $G = \mathbb{Z}_4 \bigoplus U(4)$, $H = \langle (2,3) \rangle$, and $K = \langle (2,1) \rangle$.

- 1. List the elements of H, and discuss their order.
- 2. List the elements of K, and discuss their order.
- 3. Show $H \approx K$.
- 4. List the elements of G/H, and discuss their order.
- 5. List the elements of G/K, and discuss their order.
- 6. Show $G/H \not\approx G/K$.

November 15, 2002