QUESTIONS ABOUT SYMMETRY

- 1. What kind of symmetries are there?
- 2. What exactly do we mean by a symmetry anyway?
- 3. Does the set of symmetries of an object always form a group?
- 4. What kinds of groups can be the set of symmetries for some object? Is there some object out there whose set of symmetries is (isomorphic to) $GL(2,\mathbb{R})$? Or A_5 ?

Show that an isometry $T: \mathbb{R}^n \longrightarrow \mathbb{R}^n$ is one-to-one.

November 20, 2002

Let F be a set of points in \mathbb{R}^n . Let S = the set of all isometries of \mathbb{R}^n that carry F onto itself. Show that S is a group under function composition.

November 20, 2002