Definition: Let $H \leq G$. For any $a \in G$, the set $aH = \{ah | h \in H\}$ is the **left coset of** H **in** G **containing** a. Similarly, $Ha = \{ha | h \in H\}$ is the **right coset of** H **in** G **containing** a.

Example: Let $G = \{e, x, x^2, x^3\} = \langle x \rangle$. Then $H = \{e, x^2\} = \langle x^2 \rangle$ is a subgroup of G.

On October 23, we found the cosets of H to be:

$$eH = \{e, x^2\} = x^2H$$

 $xH = \{x, x^3\} = x^3H$
 $He = \{e, x^2\} = Hx^2$
 $Hx = \{x, x^3\} = Hx^3$

Recall: Just because aH = bH does not mean ah = bh for all $h \in H$. In our above example, $xH = x^3H$, but $xh \neq x^3h$ for all $h \in H$. Specifically, $x * e = x^3 * x^2$, $x * x^2 = x^3 * e$.

November 8, 2002