Prove that the following sets are commutative rings with unity.

1. \(R = \{0, 2, 4, 6, 8\} \), under addition and multiplication mod 10.

2. \(\mathbb{Z}[\sqrt{2}] = \{a + b\sqrt{2} | a, b \in \mathbb{Z}\} \), under ordinary addition and multiplication of real numbers.
Remember:

1. An integral domain is a commutative ring (with 1), with no zero-divisors (i.e. such that if $ab = 0$, then $a = 0$ or $b = 0$).

2. A field is a commutative ring (with 1), in which every non-zero element is a unit (i.e. in which every non-zero element has a multiplicative inverse).

December 6, 2004
1. We know that if a commutative ring (with 1) has no zero-divisors, then the cancellation property holds. That is, if a commutative ring (with 1) has no zero-divisors, then \(ab = ac \), then \(b = c \).

Show that the converse is also true; that is, show that a commutative ring with the cancellation property has no zero-divisors.

2. Show that every nonzero element of \(\mathbb{Z}_n \) is either a unit or a zero-divisor.

3. Find a non-zero element in a ring that is neither a zero-divisor nor a unit.

 \textit{Hint:} Consider the ring \(\mathbb{Z}[x] \), the set of all polynomials with integers as coefficients.