Thm 10.1: Properties of Elements under Homomorphisms

Let $\phi: G \to \overline{G}$ be a homomorphism, and let $g \in G$. Then

- 1. $\phi(e_G) = e_{\bar{G}}$
- 2. $\phi(g^n) = (\phi(g))^n$ for all $n \in \mathbb{Z}$
- 3. If |g| is finite, then $|\phi(g)|$ divides |g|

Thm 10.2: Properties of Subgroups under Homomorphisms

Let $\phi: G \to \bar{G}$ be a homomorphism, and let $H \leq G$. Then

- 1. $\phi(H)$ is a subgroup of \bar{G}
- 2. If H is cyclic, so is $\phi(H)$
- 3. If H is Abelian, so is $\phi(H)$
- 4. If $H \triangleleft G$, then $\phi(H) \triangleleft \phi(G)$
- 6. If |H| = n, then $|\phi(H)|$ divides n.
- 7. If \bar{K} is a subgroup of \bar{G} , then $\phi^{-1}(\bar{K})$ is a subgroup of G

November 19, 2004

1. Let G be a group of permutations. For each $\sigma \in G$, define

$$sgn(\sigma) = \begin{cases} +1 & \text{if } \sigma \text{ is an even permutation,} \\ -1 & \text{if } \sigma \text{ is an odd permutation.} \end{cases}$$

Prove that sgn is a homomorphism from G to the multiplicative group $\{+1, -1\}$. What is the kernel?

2. Find the kernel of the homomorphism $p:G\oplus H\to G$ by p(g,h)=g.

November 19, 2004

Thm 10.1: Properties of Elements under Homomorphisms

Let $\phi: G \to \bar{G}$ be a homomorphism, and let $g \in G$. Then

- 1. $\phi(e_G) = e_{\bar{G}}$
- 2. $\phi(g^n) = (\phi(g))^n$ for all $n \in \mathbb{Z}$
- 3. If |g| is finite, then $|\phi(g)|$ divides |g|
- 4. $Ker(\phi)$ is a subgroup of G
- 5. If $\phi(g) = g'$, then $\phi^{-1}(g') = gKer(\phi)$.

Thm 10.2: Properties of Subgroups under Homomorphisms

Let $\phi: G \to \bar{G}$ be a homomorphism, and let $H \leq G$. Then

- 1. $\phi(H)$ is a subgroup of \bar{G}
- 2. If H is cyclic, so is $\phi(H)$
- 3. If H is Abelian, so is $\phi(H)$
- 4. If $H \triangleleft G$, then $\phi(H) \triangleleft \phi(G)$
- 5. If $|Ker(\phi)| = n$, then ϕ is a n-to-1 mapping from G onto $\phi(G)$.
- 6. If |H| = n, then $\phi(H)$ divides n.
- 7. If \bar{K} is a subgroup of \bar{G} , then $\phi^{-1}(\bar{K})$ is a subgroup of G
- 8. If $\bar{K} \triangleleft \bar{G}$, then $\phi^{-1}(\bar{K}) \triangleleft G$
- 9. If ϕ is onto and $Ker(\phi) = \{e\}$, then ϕ is an isomorphism from G to barG.

November 19, 2004

Remember:

Definition: If $\phi: G \to \bar{G}$ is a group homomorphism, then $Ker(\phi) = \{g \in G | \phi(g) = e_{\bar{G}}\}.$

November 17, 2004