- 1. **Definition:** A subgroup H of a group G is a **normal** subgroup iff aH = Ha for all $a \in G$. We denote a normal subgroup by $H \triangleleft G$.
- 2. It is possible for a subgroup H to be normal even if $ah \neq ha$ for all $h \in H$ and for all $a \in G$.
- 3. Claim 1: If G is Abelian, then *every* subgroup H of G is normal.
- 4. Claim 2: Let G be any group. Then Z(G) is normal in G.
- 5. Claim 3: If |G:H| = 2, then $H \triangleleft G$.

Remember: Having index 2 means H has only two left cosets in G.

6. Theorem 9.1: A Test for Normality: A subgroup $H \leq G$ is normal $\iff (x)^{-1}Hx \subseteq H$ for all $x \in G$.

November 5, 2004