Show that U(8) is not isomorphic to U(10), but is isomorphic to U(12).

October 15, 2004

- 1. Let \mathbb{R}^+ be the group of positive real numbers under multiplication. Show that the mapping $\phi(x) = \sqrt{x}$ is an automorphism of \mathbb{R}^+ .
- 2. Find $Aut(\mathbb{Z})$.

Hint: It may be helpful to remember that $\mathbb{Z} = <1>$.

3. Let $r \in U(n)$. Prove that the mapping $\alpha : \mathbb{Z}_n \to \mathbb{Z}_n$ defined by $\alpha(s) = sr \mod n$ for all s in \mathbb{Z}_n is an automorphism of \mathbb{Z}_n

October 15, 2004