- 1. For n = 8,27, find all positive integers less than n and relatively prime to n.
 - $n=8=2^3$:

Remember, an integer a is relatively prime to 8 if gcd(a, 8) = 1. If 2 divides a, then since 2 also divides 8, $gcd(a, 8) \neq 1$. But since 2 is the only prime factor of 8, if 2 does *not* divide a, then gcd(a, 8) = 1.

Thus, the set of all positive integers less than 8 and relatively prime to 8 is the set of all odd numbers:

 $\{1, 3, 5, 7\}.$

• $n = 27 = 3^3$:

If 3 divides an integer a, then since 3 also divides 27, $gcd(a, 27) \neq 1$. However, since 3 is the only prime factor of 27, if 3 does *not* divide a, then gcd(a, 27) = 1.

Thus, the set of all positive integers less than 27 and relatively prime to 27 is the set of all positive integers which aren't multiples of 3; that is,

 $\{1, 2, 4, 5, 7, 8, 10, 11, 13, 14, 16, 17, 19, 20, 22, 23, 25, 26\}.$

2. If $a = 2^4 \cdot 3^2 \cdot 5 \cdot 7^2$ and $b = 2 \cdot 3^3 \cdot 7 \cdot 11$, determine gcd(a, b) and lcm(a, b).

For both of these, we use the fact that all integers have unique prime factorizations.

• Any number which divides *a* must consist only of factors of *a*.

Furthermore, it can't have more factors of 2, for instance, than a does. Thus any number which divides a must have between 0 and 4 factors of 2.

Similarly, any number which divides b must consist only of factors of b, and it can't have more factors of (for instance) 2 than b does. Thus any number that divides b must have between 0 and 1 factor of 2.

The most 2's a common divisor of both a and b could have is thus 1, and so the greatest common divisor of a and b must have exactly 1 power of 2.

Proceeding similarly, gcd(a, b) must have a factor of 3^2 (3^2 divides both a and b, but 3^3 only divides b); and a factor of 7; while 5 divides a it doesn't divide b so it can't divide the common divisor, and similarly for 11.

Thus $gcd(a,b) = 2 \cdot 3^2 \cdot 7$.

• Any multiple of a has as some of its factors 2^4 , 3^2 , 5, and 7^2 . Similarly, any multiple of b has as some of its factors 2, 3^3 , 7, and 11.

Thus any common multiple of both a and b must have $at \ least$ factors of 2^4 , 3^3 , 5, 7^2 , and 11. This gives us the least common multiple:

 $\mathbf{lcm}(\mathbf{a}, \mathbf{b}) = 2^4 \cdot 3^3 \cdot 5 \cdot 7^2 \cdot 11$

3. Determine 51 mod 13.

51(mod13) = the remainder when 51 is divided by 13. Thus 51mod13 = 12.

Another way to think of it: 13 goes evenly in to 52, exactly 4 times. 51 is one short of 52, so the reminder is -1. $51mod_{13} = -1 = 12$.

4. gcd(12,35) = 1, of course. Find integers s and t so that 1 = 12s + 35t. Are s and t unique?

Remember to use the Euclidean Algorithm: use division repeatedly (you may need to look in your books)

•

 $35 = 2 \cdot 12 + 11 \implies 11 = 35 - 2 \cdot 12$ $12 = 1 \cdot 11 + 1 \implies 1 = 12 - 1 \cdot 11$ $1111 \cdot 1$

Putting our results together and working backwards, we find

 $1 = 12 - 1 \cdot 11$ = 12 - (35 - 2 \cdot 12) = 3 \cdot 12 - 1 \cdot 35

Therefore with s = 3 and t = -1, 1 = 12s + 35t.

Sklensky

• Are s and t unique?

NO! It is also true that $11 \cdot 35 - 32 \cdot 12 = 385 - 384 = 1$, or in other words, 1 = 12s + 35t with s = -32 and t = 11.

(I just found this by fiddling around; there's probably an efficient way to find a counter-example to the uniqueness of the linear combination, but I didn't find one.)

- 5. Let $S = \mathbb{R}$ and define $a \sim b \iff a^2 = b^2$.
 - (a) Show \sim is an equivalence relation.

I need to check:

- **Reflexivity:** For all $a \in \mathbb{R}$, is $a \sim a$?
- Symmetry: For all $a, b \in \mathbb{R}$ such that $a \sim b$, is it also true that $b \sim a$?
- Transitivity: For all $a, b, c \in R$ such that $a \sim b$ and $b \sim c$, is it true that $a \sim c$?

How do those questions translate to this situation?

- Reflexivity: For all a ∈ R, is a ~ a? In other words, is a² = a²? Of course!
- Symmetry: For all $a, b \in \mathbb{R}$ such that $a \sim b$, is it also true that $b \sim a$?

In other words, is it true that if $a^2 = b^2$, then $b^2 = a^2$? Of course!

Transitivity: For all a, b, c ∈ R such that a ~ b and b ~ c, is it true that a ~ c?
In other words, is it true that if a² = b² and b² = c², then a² = c²? Of course!

Therefore the relation $a \sim b$ if $a^2 = b^2$ is an equivalence relation.

(b) What are the equivalence classes? By definition, $[a] = \{b \in \mathbb{R} | b \sim a\} = \{b \in \mathbb{R} | b^2 = a^2\} = \{a, -a\}.$ Thus, the equivalence classes of this equivalence relation are:

$$[0] = \{0\}$$

$$[1] = \{1, -1\}$$

$$[2] = \{2, -2\}$$

$$[3] = \{3, -3\}$$

etc