Recall:

Def: A *ring R* is an Abelian group under addition, with an additional binary operation multiplication such that multiplication is associative and multiplication is distributive over addition.

Definition: A **field** is a commutative ring with unity in which every non-zero element is a unit.

Def: Definition: A **zero-divisor** is a non-zero element a of a commutative ring R such that there is a non-zero element $b \in R$ with ab = 0.

Questions:

- 1. We know that rings that have the cancellation property $a \neq 0$ and $ab = ac \Rightarrow b = c$ can not have zero-divisors. Is *not* having zero divisors enough to give a ring the cancellation property?
- 2. Can fields have zero-divisors?
- 3. Is *not* having zero-divisors enough to make a commutative ring with unity a field?

In Class Work

- 1. Show that every nonzero element of \mathbb{Z}_n is either a unit or a zero-divisor.
- 2. Find an element in $\mathbb{Z}[x]$ which is neither a unit nor a zero-divisor.
- 3. Suppose that a and b belong to an integral domain.
 - 3.1 If $a^5 = b^5$ and $a^3 = b^3$, prove that a = b.
 - 3.2 If $a^m = b^m$ and $a^n = b^n$, where m and n are relatively prime integers, prove that a = b.
- 4. Let R be a ring with unity. If the product of any pair of nonzero elements of R is nonzero, prove that ab = 1 implies that ba = 1.

Solutions

1. Show that every nonzero element of \mathbb{Z}_n is either a unit or a zero-divisor. Let $a \neq 0 \in \mathbb{Z}_n$ such that a is not a unit. NTS a is a zero divisor. In other words, NTS $\exists b \neq 0$ such that ab = 0 in \mathbb{Z}_n .

Remember from Friday, the units of \mathbb{Z}_n are those elements relatively prime to n, or U(n).

Thus if a is not a unit, $gcd(a, n) = k \neq 1$.

Let
$$b = \frac{n}{k}$$
. $b \in \mathbb{Z}$, and $0 < b < n$ so $b \in \mathbb{Z}_n$.

$$ab = a\left(\frac{n}{k}\right) = \left(\frac{a}{k}\right)n.$$

Since k|a,

$$ab = cn = 0 \mod n$$
.

Thus a is a zero divisor in \mathbb{Z}_n .

- 3. Suppose that a and b belong to an integral domain.
 - 1. If $a^5 = b^5$ and $a^3 = b^3$, prove that a = b.

$$a^3 = b^3 \Rightarrow a^6 = b^6 \Rightarrow a^5 a = b^5 b \Rightarrow a^5 a = a^5 b$$

Since in a domain, we have cancellation, a = b

- 2. If $a^m = b^m$ and $a^n = b^n$, where m and n are relatively prime integers, prove that a = b.
 - Because gcd(m, n) = 1, $\exists s, t \text{ such that } sm + tn = 1$.

4. Let R be a ring with unity. If the product of any pair of nonzero elements of R is nonzero, prove that ab=1 implies that ba=1. Assume a, b are elements such that ab=1. Need to show that ba=1 as well. (In other words, that the left and right inverses are the same, in this case).

Note that ab = 1 means that neither a = 0 nor b = 0.

$$ab = 1 \Rightarrow (ab)a = a \Rightarrow a(ba) - a = 0 \Rightarrow a(ba - 1) = 0$$

Since the product of any pair of nonzero elements is nonzero and since $a \neq 0$, ba-1 must be 0.

Thus ba = 1.