The Alternating Group A_4 of Even Permutations of $\{1, 2, 3, 4\}$

In this table, the permutations of A_4 are designated as ε , α_2 ,, α_{12} .												
•	ε	α_2	α_3	α_4	α_5	α_6	α_7	α_8	α_9	α_{10}	α_{12} . α_{11}	α_{12}
$(1) = \varepsilon$	ε	α_2	α_3	α_4	α_5	α_6	α_7	α ₈	α_9	α_{10}	α_{11}	α_{12}
$(12)(34) = \alpha_2$	α_2	ε	α_{4}	α_3	α_6	α_5	α_8	α_7	$lpha_{10}$	lpha9	α_{12}	α_{11}
$(13)(24) = \alpha_3$	α_3	α_{4}	ε	α_2	α_7	$lpha_8$	α_5	α_6	α_{11}	α_{12}	lpha9	α_{10}
$(14)(23) = \alpha_4$	α_4	α_3	$lpha_2$	ε	α_8	α_7	α_6	α_5	α_{12}	α_{11}	α_{10}	lpha9
$(123) = \alpha_5$	α_5	α_8	α_6	α_7	α_9	α_{12}	α_{10}	α_{11}	ε	α_4	α_2	α_3
$(243) = \alpha_6$	α_6	α_7	α_5	$lpha_8$	α_{10}	α_{11}	α_9	α_{12}	α_2	α_3	ε	α_{4}
$(142) = \alpha_7$	α_7	α_6	α_8	$lpha_{5}$	α_{11}	α_{10}	α_{12}	lpha9	α_3	α_2	α_4	ε
$(134) = \alpha_8$	α ₈	α_5	α_7	α_6	α_{12}	$lpha_{9}$	α_{11}	$lpha_{10}$	α_4	ε	α_3	α_2
$(132) = \alpha_9$	α9	α_{11}	α_{12}	α_{10}	ε	α_3	α_4	α_2	$lpha_{5}$	α_7	$lpha_8$	α_6
$(143) = \alpha_{10}$	α_{10}	α_{12}	α_{11}	$lpha_{9}$	α_2	α_{4}	α_3	ε	α_6	$lpha_8$	α_7	α_5

 $(124) = \alpha_{12}$ α_{12} α_{10} Math 321-Abstracti (Sklensky)

 $(234) = \alpha_{11}$

lpha9

 α_{10}

 α_{11}

 α_{9} α_{11} α_4 α_2 In-Class Work

 α_{12}

 α_3

 α_4

 α_3

 α_7

 α_8

 α_2

 α_6 α_{5} November 15, 2010

 α_5

 α_6

 α_7 990 1 / 6

 α_8

- 1. Let $G = \mathbb{Z}/20\mathbb{Z}$ and $H = 4\mathbb{Z}/20\mathbb{Z}$. List the elements of G/H. (How do you know G/H is a group?)(You may assume that a factor group of an Abelian group is Abelian, which you will be showing for PS 8)
- 2. Determine the order of $(\mathbb{Z} \oplus \mathbb{Z})/<(4,2)>$. Is the group cyclic?

Helpful shorthand for cosets (just remember the elements are really sets!):

Write $a + 20\mathbb{Z}$ as \bar{a} .

Helpful shorthand for cosets (just remember the elements are really sets!):

Write
$$a + 20\mathbb{Z}$$
 as \bar{a} .

With this notation, the elements of G are the cosets

$$G = {\{\overline{0}, \overline{1}, \overline{2}, \overline{3}, \overline{4}, \dots, \overline{19}\}}.$$

$$G = {\overline{0}, \overline{1}, \overline{2}, \overline{3}, \overline{4}, \dots, \overline{19}}.$$

By definition,

$$H = 4\mathbb{Z}/20\mathbb{Z} = \{\bar{a} \in \mathbb{Z}/20\mathbb{Z} | a \in 4\mathbb{Z}\}.$$

$$G = {\{\overline{0}, \overline{1}, \overline{2}, \overline{3}, \overline{4}, \dots, \overline{19}\}}.$$

By definition,

$$H = 4\mathbb{Z}/20\mathbb{Z} = \{\bar{a} \in \mathbb{Z}/20\mathbb{Z} | a \in 4\mathbb{Z}\}.$$

Hence

$$H = 4\mathbb{Z}/20\mathbb{Z} = \{\overline{0}, \overline{4}, \overline{8}, \overline{12}, \overline{16}\}.$$

Now we know:

$$\textit{G} = \{\overline{0}, \overline{1}, \overline{2}, \overline{3}, \overline{4}, \dots, \overline{19}\} \qquad \text{ and } \qquad \textit{H} = \{\overline{0}, \overline{4}, \overline{8}, \overline{12}, \overline{16}\}.$$

Why is G/H a group?

Now we know:

$$\textit{G} = \{\overline{\textbf{0}}, \overline{\textbf{1}}, \overline{\textbf{2}}, \overline{\textbf{3}}, \overline{\textbf{4}}, \dots, \overline{\textbf{19}}\} \qquad \text{ and } \qquad \textit{H} = \{\overline{\textbf{0}}, \overline{\textbf{4}}, \overline{\textbf{8}}, \overline{\textbf{12}}, \overline{\textbf{16}}\}.$$

Why is G/H a group?

Using that a factor group of an Abelian group is Abelian, every subgroup of G is normal. In particular, $H \triangleleft G$, and so G/H is a group.

Now we know:

$$\mathcal{G} = \{\overline{0}, \overline{1}, \overline{2}, \overline{3}, \overline{4}, \dots, \overline{19}\} \qquad \text{ and } \qquad \mathcal{H} = \{\overline{0}, \overline{4}, \overline{8}, \overline{12}, \overline{16}\}.$$

List the elements of G/H.

Since |G| = 20 and |H| = 5, from Lagrange's Theorem, we know that |G/H| = 4, so we know how many distinct cosets we're looking for.

Now we know:

$$\textit{G} = \{\overline{0}, \overline{1}, \overline{2}, \overline{3}, \overline{4}, \ldots, \overline{19}\} \qquad \text{ and } \qquad \textit{H} = \{\overline{0}, \overline{4}, \overline{8}, \overline{12}, \overline{16}\}.$$

The elements of G/H are:

Now we know:

$$\textit{G} = \{\overline{0}, \overline{1}, \overline{2}, \overline{3}, \overline{4}, \dots, \overline{19}\} \qquad \text{ and } \qquad \textit{H} = \{\overline{0}, \overline{4}, \overline{8}, \overline{12}, \overline{16}\}.$$

The elements of G/H are:

Note: Since |G/H| = 4, we know that G/H is either cyclic and isomorphic

We have seen that $\mathbb{Z}/n\mathbb{Z} \approx \mathbb{Z}_n$. So

First Guess: $(\mathbb{Z} \oplus \mathbb{Z}) < (4,2) > \approx \mathbb{Z}/4\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}$

We have seen that $\mathbb{Z}/n\mathbb{Z} \approx \mathbb{Z}_n$. So

First Guess: $(\mathbb{Z} \oplus \mathbb{Z}) < (4,2) > \approx \mathbb{Z}/4\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}$

In that case, the order would be 8. Is this true?

We have seen that $\mathbb{Z}/n\mathbb{Z} \approx \mathbb{Z}_n$. So

First Guess: $(\mathbb{Z} \oplus \mathbb{Z}) < (4,2) > \approx \mathbb{Z}/4\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}$

In that case, the order would be 8. Is this true?

$$<(4,2)> = \{(0,0),(\pm 4,\pm 2),(\pm 8,\pm 4),(\pm 12,\pm 6),\ldots\}$$

= $\{(4n,2n)|n\in\mathbb{Z}\}$

We have seen that $\mathbb{Z}/n\mathbb{Z} \approx \mathbb{Z}_n$. So

First Guess:
$$(\mathbb{Z} \oplus \mathbb{Z}) < (4,2) > \approx \mathbb{Z}/4\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}$$

In that case, the order would be 8. Is this true?

$$<(4,2)> = \{(0,0),(\pm 4,\pm 2),(\pm 8,\pm 4),(\pm 12,\pm 6),\ldots\}$$

= $\{(4n,2n)|n\in\mathbb{Z}\}$

A few elts (all of the form (n,0)+<(4,2)>) of $\mathbb{Z}\oplus\mathbb{Z}/<(4,2)>$:

$$(0,0)+<(4,2)>,(1,0)+<(4,2)>,(2,0)+<(4,2)>,$$

 $(3,0)+<(4,2)>,(4,0)+<(4,2)>....$

(3,0)+ < (4,2) >, (4,0)+ < (4,2) >.

These are all distinct.

We have seen that $\mathbb{Z}/n\mathbb{Z} \approx \mathbb{Z}_n$. So

First Guess:
$$(\mathbb{Z} \oplus \mathbb{Z}) < (4,2) > \approx \mathbb{Z}/4\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}$$

In that case, the order would be 8. Is this true?

$$<(4,2)> = \{(0,0),(\pm 4,\pm 2),(\pm 8,\pm 4),(\pm 12,\pm 6),\ldots\}$$

= $\{(4n,2n)|n\in\mathbb{Z}\}$

A few elts (all of the form (n,0)+<(4,2)>) of $\mathbb{Z}\oplus\mathbb{Z}/<(4,2)>$:

$$(0,0)+<(4,2)>,(1,0)+<(4,2)>,(2,0)+<(4,2)>,$$

 $(3,0)+<(4,2)>,(4,0)+<(4,2)>....$

These are all distinct.

In general, $(n,0)+<(4,2)>\neq (m,0)+<(4,2)>$ as long as $n\neq m$. (To see this, remember that $aH=bH\Longleftrightarrow a^{-1}b\in H$.)

We have seen that $\mathbb{Z}/n\mathbb{Z} \approx \mathbb{Z}_n$. So

First Guess:
$$(\mathbb{Z} \oplus \mathbb{Z}) < (4,2) > \approx \mathbb{Z}/4\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}$$

In that case, the order would be 8. Is this true?

$$<(4,2)> = \{(0,0),(\pm 4,\pm 2),(\pm 8,\pm 4),(\pm 12,\pm 6),\ldots\}$$

= $\{(4n,2n)|n\in\mathbb{Z}\}$

A few elts (all of the form (n,0)+<(4,2)>) of $\mathbb{Z}\oplus\mathbb{Z}/<(4,2)>$:

$$(0,0)+<(4,2)>,(1,0)+<(4,2)>,(2,0)+<(4,2)>,$$

 $(3,0)+<(4,2)>,(4,0)+<(4,2)>....$

These are all distinct.

In general, $(n,0)+<(4,2)>\neq (m,0)+<(4,2)>$ as long as $n\neq m$.

(To see this, remember that $aH = bH \iff a^{-1}b \in H$.)

Thus there are an infinite number of distinct cosets, and therefore $|\mathbb{Z} \oplus \mathbb{Z}/<(4,2)>|=\infty.$

Since the order of the group is infinite, if it is cyclic then every non-identity element must have infinite order.

Since the order of the group is infinite, if it is cyclic then every non-identity element must have infinite order.

Goal: find $(a, b) \in \mathbb{Z} \oplus \mathbb{Z}$ but not in < (4, 2) > such that (a, b) + < (4, 2) > has finite order.

Since the order of the group is infinite, if it is cyclic then every non-identity element must have infinite order.

Goal: find $(a, b) \in \mathbb{Z} \oplus \mathbb{Z}$ but not in < (4, 2) > such that (a, b) + < (4, 2) > has finite order.

The quickest order to find is order 2, so try to find an elt with 2[(a,b)+<(4,2)>]=(0,0)+<(4,2)>

Since the order of the group is infinite, if it is cyclic then every non-identity element must have infinite order.

Goal: find $(a, b) \in \mathbb{Z} \oplus \mathbb{Z}$ but not in < (4, 2) > such that

$$2((a,b)+<(4,2)>=(0,0)+<(4,2)>.$$

Want: $(a, b) \in \mathbb{Z} \oplus \mathbb{Z}$ but not in < (4, 2) > such that $(2a, 2b) \in <$ (4, 2) >.

Since the order of the group is infinite, if it is cyclic then every non-identity element must have infinite order.

Goal: find $(a, b) \in \mathbb{Z} \oplus \mathbb{Z}$ but not in < (4, 2) > such that

$$2((a,b)+<(4,2)>=(0,0)+<(4,2)>.$$

Want: $(a, b) \in \mathbb{Z} \oplus \mathbb{Z}$ but not in < (4, 2) > such that $(2a, 2b) \in < (4, 2) >$.

(2,1) seems like it would work.

Check:

$$2((2,1)+<(4,2)>)=(4,2)+<(4,2)>=<4,2>.$$

Since the order of the group is infinite, if it were cyclic, every non-identity element would have infinite order.

$$(2,1)+<(4,2)> \neq (0,0)+<(4,2)>$$

and

$$((2,1)+<(4,2)>)^{"2"}=(0,0)+<(4,2)>,$$

so we have found an element of order 2 in $(\mathbb{Z} \oplus \mathbb{Z})/<(4,2)>$. Thus this group is **not** cyclic.