1 / 7

PROPERTIES OF ELEMENTS UNDER HOMOMORPHISMS — THOSE THAT WE (ESSENTIALLY) ALREADY SAW WHEN STUDYING ISOMORPHISMS

Let $\phi: G \to \overline{G}$ be a homomorphism, and let $g \in G$.

Properties homomorphisms share with isomorphisms	Properties of homomorphisms that differ from those of isomorphisms
1. $\phi(e_G) = e_{\bar{G}}$	3. If $ g $ is finite, $ \phi(g) $ divides $ g $.
2. $\phi(g^n) = (\phi(g))^n \ \forall \ n \in \mathbb{Z}$.	

Note: Just as with isomorphisms, from Property 2 we know that $\phi(g^{-1}) = (\phi(g))^{-1}$.

PROPERTIES OF SUBGROUPS UNDER HOMOMORPHISMS — THOSE THAT ARE SHARED WITH ISOMORPHISMS

Let $\phi: G \to \overline{G}$ be a homomorphism, and let H be a subgroup of G.

- 1. $\phi(H) = {\phi(h)|h \in H}$ is a subgroup of \bar{G} .
- 2. If H is cyclic, then $\phi(H)$ is cyclic.
- 3. If H is Abelian, then $\phi(H)$ is Abelian.

Note: From Property 1, we know that $\phi(G)$ is a subgroup of \overline{G} .

Properties of Homomorphisms

Let $\phi: G \to \overline{G}$ be a homomorphism, let $g \in G$, and let $H \leq G$.

Properties of elements	Properties of subgroups
$1. \ \phi(e_G) = e_{\bar{G}}$	1. $\phi(H) \leq \bar{G}$.
2. $\phi(g^n) = (\phi(g))^n \forall n \in \mathbb{Z}$.	2. H cyclic $\Longrightarrow \phi(H)$ cyclic.
3. If $ g $ is finite, $ \phi(g) $ $ g $.	3. H Abelian $\Longrightarrow \phi(H)$ Abelian.
	7. $\bar{K} \leq \bar{G} \Longrightarrow \phi^{-1}(\bar{K}) \leq G$.

Properties of Homomorphisms

Let $\phi: G \to \overline{G}$ be a homomorphism, let $g \in G$, and let $H \leq G$.

Properties of elements	Properties of subgroups
$1. \ \phi(e_G) = e_{\bar{G}}$	1. $\phi(H) \leq \bar{G}$.
2. $\phi(g^n) = (\phi(g))^n \forall n \in \mathbb{Z}$.	2. H cyclic $\Longrightarrow \phi(H)$ cyclic.
3. If $ g $ is finite, $ \phi(g) $ $ g $.	3. H Abelian $\Longrightarrow \phi(H)$ Abelian.
	7. $\bar{K} \leq \bar{G} \Longrightarrow \phi^{-1}(\bar{K}) \leq G$.
	$4. \ H \triangleleft G \Longrightarrow \phi(H) \triangleleft \phi(G)$

Properties of Homomorphisms

Let $\phi: G \to \overline{G}$ be a homomorphism, let $g \in G$, and let $H \leq G$.

Properties of elements	Properties of subgroups
$1. \ \phi(e_G) = e_{\bar{G}}$	1. $\phi(H) \leq \bar{G}$.
2. $\phi(g^n) = (\phi(g))^n \forall n \in \mathbb{Z}$.	2. H cyclic $\Longrightarrow \phi(H)$ cyclic.
3. If $ g $ is finite, $ \phi(g) $ $ g $.	3. H Abelian $\Longrightarrow \phi(H)$ Abelian.
	7. $\bar{K} \leq \bar{G} \Longrightarrow \phi^{-1}(\bar{K}) \leq G$.
	$4. \ H \triangleleft G \Longrightarrow \phi(H) \triangleleft \phi(G)$
	8. $\bar{K} \triangleleft \bar{G} \Longrightarrow \phi^{-1}(\bar{K}) \triangleleft G$.

In Class Work

- 1. Find the kernel of the homomorphism $p:G\oplus H\to G$ by p(g,h)=g.
- 2. Find the kernel of the homomorphism $i: H \to G \oplus H$ by $i(h) = (e_G, h)$.

Solutions:

1. Find the kernel of the homomorphism $p: G \oplus H \to G$ by p(g,h) = g.

$$Ker(p) = \{(g,h) \in G \oplus H | p(g,h) = e_G\}$$

$$= \{(g,h)|g = e_G\}$$

$$= \{(e_G,h)|h \in H\}$$

$$= \{e_G\} \oplus H.$$

Solutions:

2. Find the kernel of the homomorphism $i: H \to G \oplus H$ by $i(h) = (e_G, h)$.

$$Ker(i) = \{h \in H | i(h) \}$$
 $= e_{G \oplus H}$
 $= (e_G, e_H) \}$
 $= \{h \in H | (e_G, h) \}$
 $= (e_G, e_H) \}$
 $= \{e_H \}.$

Note: We could have done this faster. Since *i* is a homomorphism, we *know* the identity goes to the identity. Since it's 1-1, nothing besides the identity can map to the identity. Thus the kernel, which is the set of all things that map to the identity, contains only the identity.