Recall: Properties of Homomorphisms

Let $\phi: G \to \overline{G}$ be a homomorphism, let $g \in G$, and let $H \leq G$.

Properties of elements	Properties of subgroups
1. $\phi(e_G) = e_{\overline{G}}$	1. $\phi(H) \leq \overline{G}$.
2. $\phi(g^n) = (\phi(g))^n$ for all $n \in \mathbb{Z}$.	2. <i>H</i> cyclic $\Rightarrow \phi(H)$ cyclic.
3. If $ g $ is finite, $ \phi(g) $ divides $ g $.	3. <i>H</i> Abelian $\Rightarrow \phi(H)$ Abelian.
4. $Ker(\phi) \leq G$	4. $H \triangleleft G \Rightarrow \phi(H) \triangleleft \phi(G)$
In fact, $Ker(\phi) \triangleleft G$	
5. $\phi(a) = \phi(b)$	
$\Rightarrow aKer(\phi) = bKer(\phi)$	
6. $\phi(g) = \bar{g} \Rightarrow \phi^{-1}(\bar{g}) = gKer(\phi)$	
	7. $\bar{K} \leq \bar{G} \Rightarrow \phi^{-1}(\bar{K}) \leq G.$
	8. $\bar{K} \triangleleft \bar{G} \Rightarrow \phi^{-1}(\bar{K}) \triangleleft G.$

Math 321-Abstract (Sklensky)

In-Class Work

Properties of Homomorphisms

Let $\phi: G \to \overline{G}$ be a homomorphism, let $g \in G$, and let $H \leq G$.

Properties of elements	Properties of subgroups
1. $\phi(e_G) = e_{\overline{G}}$	1. $\phi(H) \leq \overline{G}$.
2. $\phi(g^n) = (\phi(g))^n$ for all $n \in \mathbb{Z}$.	2. <i>H</i> cyclic $\Rightarrow \phi(H)$ cyclic.
3. If $ g $ is finite, $ \phi(g) $ divides $ g $.	3. <i>H</i> Abelian $\Rightarrow \phi(H)$ Abelian.
4. $Ker(\phi) \leq G$	4. $H \triangleleft G \Rightarrow \phi(H) \triangleleft \phi(G)$
In fact, $Ker(\phi) \triangleleft G$	
5. $\phi(a) = \phi(b)$	5. $ Ker(\phi) = n \Rightarrow \phi$ is an <i>n</i> -to-1
$\Rightarrow aKer(\phi) = bKer(\phi)$	map
6. $\phi(g) = \bar{g} \Rightarrow \phi^{-1}(\bar{g}) = gKer(\phi)$	
	7. $\bar{K} \leq \bar{G} \Rightarrow \phi^{-1}(\bar{K}) \leq G.$
	8. $\bar{K} \triangleleft \bar{G} \Rightarrow \phi^{-1}(\bar{K}) \triangleleft G.$
$Ker(\phi) = \{e_{G}\} \Leftrightarrow \phi \text{ is } 1-1$	9. ϕ onto and $Ker(\phi) = \{e_G\} \Rightarrow \phi$
	an isomorphism.

Math 321-Abstract (Sklensky)

In-Class Work

- 31

イロト イポト イヨト イヨト

Properties of Homomorphisms

Let $\phi: G \to \overline{G}$ be a homomorphism, let $g \in G$, and let $H \leq G$.

Properties of elements	Properties of subgroups
1. $\phi(e_G) = e_{\overline{G}}$	1. $\phi(H) \leq \overline{G}$.
2. $\phi(g^n) = (\phi(g))^n$ for all $n \in \mathbb{Z}$.	2. <i>H</i> cyclic $\Rightarrow \phi(H)$ cyclic.
3. If $ g $ is finite, $ \phi(g) $ divides $ g $.	3. <i>H</i> Abelian $\Rightarrow \phi(H)$ Abelian.
4. $Ker(\phi) \leq G$	4. $H \triangleleft G \Rightarrow \phi(H) \triangleleft \phi(G)$
In fact, $Ker(\phi) \triangleleft G$	
5. $\phi(a) = \phi(b)$	5. $ Ker(\phi) = n \Rightarrow \phi$ is an <i>n</i> -to-1
$\Rightarrow aKer(\phi) = bKer(\phi)$	map
6. $\phi(g) = \bar{g} \Rightarrow \phi^{-1}(\bar{g}) = gKer(\phi)$	6. $ H = n \Rightarrow \phi(H) $ divides n
	7. $\bar{K} \leq \bar{G} \Rightarrow \phi^{-1}(\bar{K}) \leq G.$
	8. $\bar{K} \triangleleft \bar{G} \Rightarrow \phi^{-1}(\bar{K}) \triangleleft G.$
$Ker(\phi) = \{e_{G}\} \Leftrightarrow \phi ext{ is } 1-1$	9. ϕ onto and $Ker(\phi) = \{e_G\} \Rightarrow \phi$
	an isomorphism.

Math 321-Abstract (Sklensky)

In-Class Work

📃 ૧૧૯

イロト イポト イヨト イヨト

In Class Work

- 1. Prove that $(A \oplus B)/(A \oplus \{e\})$ is isomorphic to B, by identifying a homomorphism from $A \oplus B \to B$ that has $A \oplus \{e\}$ as its kernel.
- 2. Suppose that ϕ is a homomorphism from \mathbb{Z}_{30} to \mathbb{Z}_{30} and that $Ker(\phi) = \{0, 10, 20\}$. If $\phi(23) = 9$, determine *all* elements that map to 9.

イロト 不得 トイヨト イヨト 二日

1. Prove that $(A \oplus B)/(A \oplus \{e\})$ is isomorphic to *B*.

Define $\phi : A \oplus B \to B$ by $\phi((a, b)) = b$.

From previous in-class work, we already know that ϕ is a well-defined *onto* homomorphism. In fact, we know (more or less) from Friday what the kernel is.

$$Ker(\phi) = A \oplus \{e\}.$$

The easiest way to do this problem is to use the 1st isomorphism theorem.

1. Prove that $(A \oplus B)/(A \oplus \{e\})$ is isomorphic to *B*.

Define $\phi : A \oplus B \to B$ by $\phi((a, b)) = b$.

From previous in-class work, we already know that ϕ is a well-defined *onto* homomorphism. In fact, we know (more or less) from Friday what the kernel is.

$$Ker(\phi) = A \oplus \{e\}.$$

The easiest way to do this problem is to use the 1st isomorphism theorem.

The 1st Isomorphism Thm tells us $A \oplus B/Ker(\phi) \approx \phi(A \oplus B)$, or $A \oplus B/Ker(\phi) \approx B$, since ϕ is onto. Thus, since $Ker(\phi) = A \oplus \{e\}, A \oplus B/A \oplus \{e\} \approx B$.

Math 321-Abstract (Sklensky)

In-Class Work

- 2. Suppose that ϕ is a homomorphism from \mathbb{Z}_{30} to \mathbb{Z}_{30} and that $Ker(\phi) = \{0, 10, 20\}$. If $\phi(23) = 9$, determine *all* elements that map to 9.
 - We need to find $\phi^{-1}(9)$.

- 2. Suppose that ϕ is a homomorphism from \mathbb{Z}_{30} to \mathbb{Z}_{30} and that $Ker(\phi) = \{0, 10, 20\}$. If $\phi(23) = 9$, determine *all* elements that map to 9.
 - We need to find $\phi^{-1}(9)$.
 - Thm 10.1 Property 5 states:

if
$$\phi(g) = \bar{g}$$
, then $\phi^{-1}(\bar{g}) = gKer(\phi)$.

- 2. Suppose that ϕ is a homomorphism from \mathbb{Z}_{30} to \mathbb{Z}_{30} and that $Ker(\phi) = \{0, 10, 20\}$. If $\phi(23) = 9$, determine *all* elements that map to 9.
 - We need to find $\phi^{-1}(9)$.
 - Thm 10.1 Property 5 states:

if
$$\phi(g) = \overline{g}$$
, then $\phi^{-1}(\overline{g}) = gKer(\phi)$.

- In \mathbb{Z}_{30} , the operation is addition mod 30.
- Thm 10.1 Prop 5 thus becomes

$$\text{if } \phi(g) = \bar{g}, \text{ then } \phi^{-1}(\bar{g}) = g + \textit{Ker}(\phi), \quad \text{ mod 30}.$$

- 2. Suppose that ϕ is a homomorphism from \mathbb{Z}_{30} to \mathbb{Z}_{30} and that $Ker(\phi) = \{0, 10, 20\}$. If $\phi(23) = 9$, determine *all* elements that map to 9.
 - We need to find $\phi^{-1}(9)$.
 - Thm 10.1 Property 5 states:

if
$$\phi(g) = \overline{g}$$
, then $\phi^{-1}(\overline{g}) = gKer(\phi)$.

- In \mathbb{Z}_{30} , the operation is addition mod 30.
- Thm 10.1 Prop 5 thus becomes

$$\text{if } \phi(g) = \bar{g}, \text{ then } \phi^{-1}(\bar{g}) = g + \textit{Ker}(\phi), \quad \text{ mod 30}.$$

- We know that $\phi(23) = 9$
- Thus

$$\phi^{-1}(9) = 23 + Ker(\phi) = 23 + \{0, 10, 20\} \mod 30$$

Math 321-Abstract (Sklensky)

- 2. Suppose that ϕ is a homomorphism from \mathbb{Z}_{30} to \mathbb{Z}_{30} and that $Ker(\phi) = \{0, 10, 20\}$. If $\phi(23) = 9$, determine *all* elements that map to 9.
 - We need to find $\phi^{-1}(9)$.
 - Thm 10.1 Property 5 states:

if
$$\phi(g) = \overline{g}$$
, then $\phi^{-1}(\overline{g}) = gKer(\phi)$.

- In \mathbb{Z}_{30} , the operation is addition mod 30.
- Thm 10.1 Prop 5 thus becomes

$$\text{if } \phi(g) = \bar{g}, \text{ then } \phi^{-1}(\bar{g}) = g + \textit{Ker}(\phi), \quad \text{ mod 30}.$$

- We know that $\phi(23) = 9$
- Thus

$$\phi^{-1}(9) = 23 + Ker(\phi) = 23 + \{0, 10, 20\} \mod 30 = \{23, 3, 13\},$$

Math 321-Abstract (Sklensky)

- 2. Suppose that ϕ is a homomorphism from \mathbb{Z}_{30} to \mathbb{Z}_{30} and that $Ker(\phi) = \{0, 10, 20\}$. If $\phi(23) = 9$, determine *all* elements that map to 9.
 - We need to find $\phi^{-1}(9)$.
 - Thm 10.1 Property 5 states:

if
$$\phi(g) = ar{g}, ext{ then } \phi^{-1}(ar{g}) = g extsf{Ker}(\phi).$$

- In \mathbb{Z}_{30} , the operation is addition mod 30.
- Thm 10.1 Prop 5 thus becomes

$$\text{if } \phi(g) = \bar{g}, \text{ then } \phi^{-1}(\bar{g}) = g + \textit{Ker}(\phi), \quad \text{ mod 30}.$$

- We know that $\phi(23) = 9$
- Thus

$$\phi^{-1}(9) = 23 + Ker(\phi) = 23 + \{0, 10, 20\} \mod 30 = \{23, 3, 13\},$$

so the elements that map to 9 are 3, 13, and 23.

Math 321-Abstract (Sklensky)