If $\phi: G \to \overline{G}$ is a homomorph, $g \in G$, and $H \leq G$:

Properties of elements	Properties of subgroups
1. $\phi(e_G) = e_{\overline{G}}$	1. $\phi(H) \leq \overline{G}$.
2. $\phi(g^n) = (\phi(g))^n$ for all $n \in \mathbb{Z}$.	2. <i>H</i> cyclic $\Rightarrow \phi(H)$ cyclic.
3. If $ g $ is finite, $ \phi(g) $ divides $ g $.	3. <i>H</i> Abelian $\Rightarrow \phi(H)$ Abelian.
4. $Ker(\phi) \leq G$	4. $H \triangleleft G \Rightarrow \phi(H) \triangleleft \phi(G)$
In fact, $Ker(\phi) \triangleleft G$	
5. $\phi(a) = \phi(b)$	5. $ Ker(\phi) = n \Rightarrow \phi$ is an <i>n</i> -to-1
$\Rightarrow aKer(\phi) = bKer(\phi)$	map
6. $\phi(g) = \bar{g} \Rightarrow \phi^{-1}(\bar{g}) = gKer(\phi)$	6. $ H = n \Rightarrow \phi(H) $ divides n
	7. $\bar{K} \leq \bar{G} \Rightarrow \phi^{-1}(\bar{K}) \leq G$.
	8. $\bar{K} \triangleleft \bar{G} \Rightarrow \phi^{-1}(\bar{K}) \triangleleft G.$
$Ker(\phi) = \{e_{G}\} \Leftrightarrow \phi ext{ is } 1-1$	9. ϕ onto and $Ker(\phi) = \{e_G\} \Rightarrow \phi$
	an isomorphism.

1st Isomorphism Thm: Let $\phi : G \to \overline{G}$ be a group homomorphism. Then the mapping $\overline{\phi} : G/Ker(\phi) \to \phi(G)$, defined by $\overline{\phi}(gKer(\phi)) = \phi(g)$, is an isomorphism. In other words, $G/Ker(\phi) \approx \phi(G)$, as the set of the se

Math 321-Abstract (Sklensky)

In-Class Work

In Class Work

- 1. Prove that $(A \oplus B)/(A \oplus \{e\})$ is isomorphic to B, by identifying a homomorphism from $A \oplus B \to B$ that has $A \oplus \{e\}$ as its kernel.
- 2. Suppose that ϕ is a homomorphism from \mathbb{Z}_{30} to \mathbb{Z}_{30} and that $Ker(\phi) = \{0, 10, 20\}$. If $\phi(23) = 9$, determine *all* elements that map to 9.
- 3. Suppose that there is a homomorphism ϕ from \mathbb{Z}_{17} to some group, and that ϕ is not one-to-one. Determine ϕ .
- 4. If ϕ is a homomorphism from \mathbb{Z}_{30} onto a group of order 5, determine the kernel of $\phi.$
- 5. How many homomorphisms are there from \mathbb{Z}_{20} onto \mathbb{Z}_{10} ? How many are there to \mathbb{Z}_{10} ? (That is, how many are there that may or may not be onto?)

Math 321-Abstract (Sklensky)

In-Class Work

1. Prove that $(A \oplus B)/(A \oplus \{e\})$ is isomorphic to *B*.

Define $\phi : A \oplus B \to B$ by $\phi((a, b)) = b$.

From previous in-class work, we already know that ϕ is a well-defined *onto* homomorphism. In fact, we know (more or less) from Friday before break what the kernel is.

$$Ker(\phi) = A \oplus \{e\}.$$

The easiest way to do this problem is to use the 1st isomorphism theorem.

Math 321-Abstract (Sklensky)

1. Prove that $(A \oplus B)/(A \oplus \{e\})$ is isomorphic to *B*.

Define $\phi : A \oplus B \to B$ by $\phi((a, b)) = b$.

From previous in-class work, we already know that ϕ is a well-defined *onto* homomorphism. In fact, we know (more or less) from Friday before break what the kernel is.

$$Ker(\phi) = A \oplus \{e\}.$$

The easiest way to do this problem is to use the 1st isomorphism theorem.

The 1st Isomorphism Thm tells us $A \oplus B/Ker(\phi) \approx \phi(A \oplus B)$, or $A \oplus B/Ker(\phi) \approx B$, since ϕ is onto. Thus, since $Ker(\phi) = A \oplus \{e\}$, $A \oplus B/A \oplus \{e\} \approx B$.

November 29, 2010

3 / 8

In-Class Work

- 2. Suppose that ϕ is a homomorphism from \mathbb{Z}_{30} to \mathbb{Z}_{30} and that $Ker(\phi) = \{0, 10, 20\}$. If $\phi(23) = 9$, determine *all* elements that map to 9.
 - We need to find $\phi^{-1}(9)$.

- 2. Suppose that ϕ is a homomorphism from \mathbb{Z}_{30} to \mathbb{Z}_{30} and that $Ker(\phi) = \{0, 10, 20\}$. If $\phi(23) = 9$, determine *all* elements that map to 9.
 - We need to find $\phi^{-1}(9)$.
 - Thm 10.1 Property 6 states:

if
$$\phi(g) = \overline{g}$$
, then $\phi^{-1}(\overline{g}) = gKer(\phi)$.

- 2. Suppose that ϕ is a homomorphism from \mathbb{Z}_{30} to \mathbb{Z}_{30} and that $Ker(\phi) = \{0, 10, 20\}$. If $\phi(23) = 9$, determine *all* elements that map to 9.
 - We need to find $\phi^{-1}(9)$.
 - Thm 10.1 Property 6 states:

if
$$\phi(g) = \overline{g}$$
, then $\phi^{-1}(\overline{g}) = gKer(\phi)$.

- In \mathbb{Z}_{30} , the operation is addition mod 30.
- Thm 10.1 Prop 5 thus becomes

if
$$\phi(g)=ar{g},\,$$
 then $\phi^{-1}(ar{g})=g+{\it Ker}(\phi),\,$ mod 30.

- 2. Suppose that ϕ is a homomorphism from \mathbb{Z}_{30} to \mathbb{Z}_{30} and that $Ker(\phi) = \{0, 10, 20\}$. If $\phi(23) = 9$, determine *all* elements that map to 9.
 - We need to find $\phi^{-1}(9)$.
 - Thm 10.1 Property 6 states:

if
$$\phi(g) = \overline{g}$$
, then $\phi^{-1}(\overline{g}) = gKer(\phi)$.

- In \mathbb{Z}_{30} , the operation is addition mod 30.
- Thm 10.1 Prop 5 thus becomes

$$\text{if } \phi(g) = \bar{g}, \ \text{then} \ \phi^{-1}(\bar{g}) = g + \textit{Ker}(\phi), \quad \ \text{mod 30}.$$

- We know that $\phi(23) = 9$
- Thus

$$\phi^{-1}(9) = 23 + Ker(\phi) = 23 + \{0, 10, 20\} \mod 30$$

Math 321-Abstract (Sklensky)

- 2. Suppose that ϕ is a homomorphism from \mathbb{Z}_{30} to \mathbb{Z}_{30} and that $Ker(\phi) = \{0, 10, 20\}$. If $\phi(23) = 9$, determine *all* elements that map to 9.
 - We need to find $\phi^{-1}(9)$.
 - Thm 10.1 Property 6 states:

if
$$\phi(g) = \overline{g}$$
, then $\phi^{-1}(\overline{g}) = gKer(\phi)$.

- In \mathbb{Z}_{30} , the operation is addition mod 30.
- Thm 10.1 Prop 5 thus becomes

$$\text{if } \phi(g) = \bar{g}, \ \text{then} \ \phi^{-1}(\bar{g}) = g + \textit{Ker}(\phi), \quad \ \text{mod 30}.$$

- We know that $\phi(23) = 9$
- Thus

$$\phi^{-1}(9) = 23 + Ker(\phi) = 23 + \{0, 10, 20\} \mod 30 = \{23, 3, 13\},$$

Math 321-Abstract (Sklensky)

- 2. Suppose that ϕ is a homomorphism from \mathbb{Z}_{30} to \mathbb{Z}_{30} and that $Ker(\phi) = \{0, 10, 20\}$. If $\phi(23) = 9$, determine *all* elements that map to 9.
 - We need to find $\phi^{-1}(9)$.
 - Thm 10.1 Property 6 states:

if
$$\phi(g) = ar{g}, ext{ then } \phi^{-1}(ar{g}) = g extsf{Ker}(\phi).$$

- In \mathbb{Z}_{30} , the operation is addition mod 30.
- Thm 10.1 Prop 5 thus becomes

if
$$\phi(g)=ar{g},\,$$
 then $\phi^{-1}(ar{g})=g+{\it Ker}(\phi),\,$ mod 30.

- We know that $\phi(23) = 9$
- Thus

$$\phi^{-1}(9) = 23 + Ker(\phi) = 23 + \{0, 10, 20\} \mod 30 = \{23, 3, 13\},$$

so the elements that map to 9 are 3, 13, and 23.

Math 321-Abstract (Sklensky)

- 3. Suppose that there is a homomorphism ϕ from \mathbb{Z}_{17} to some group, and that ϕ is not one-to-one. Determine ϕ .
 - $Ker(\phi) = \{e\}$ if and only if ϕ is 1-1

Thus since ϕ is not 1-1, $Ker(\phi) \neq \{e\}$.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへで

- 3. Suppose that there is a homomorphism ϕ from \mathbb{Z}_{17} to some group, and that ϕ is not one-to-one. Determine ϕ .
 - $Ker(\phi) = \{e\}$ if and only if ϕ is 1-1

Thus since ϕ is not 1-1, $Ker(\phi) \neq \{e\}$.

Ker(φ) is a subgroup of Z₁₇ which is cyclic of prime order. Since the only subgroups of Z₁₇ are the trivial subgroup or the whole group, Ker(φ) = Z₁₇.

- 3. Suppose that there is a homomorphism ϕ from \mathbb{Z}_{17} to some group, and that ϕ is not one-to-one. Determine ϕ .
 - $Ker(\phi) = \{e\}$ if and only if ϕ is 1-1

Thus since ϕ is not 1-1, $Ker(\phi) \neq \{e\}$.

- Ker(φ) is a subgroup of Z₁₇ which is cyclic of prime order. Since the only subgroups of Z₁₇ are the trivial subgroup or the whole group, Ker(φ) = Z₁₇.
- Thus every element in Z₁₇ maps to the identity, and so φ : Z₁₇ → G must be φ(n) = e for all n ∈ Z₁₇.

- 4. If ϕ is a homomorphism from \mathbb{Z}_{30} onto a group of order 5, determine the kernel of ϕ .
 - ▶ Let $\phi : \mathbb{Z}_{30} \xrightarrow{onto} G$, where G is a group of order 5. Then by the 1st isomorphism theorem,

 $\mathbb{Z}_{30}/Ker(\phi) \approx \phi(\mathbb{Z}_{30}) = G.$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

- 4. If ϕ is a homomorphism from \mathbb{Z}_{30} onto a group of order 5, determine the kernel of ϕ .
 - ▶ Let $\phi : \mathbb{Z}_{30} \xrightarrow{onto} G$, where G is a group of order 5. Then by the 1st isomorphism theorem,

$$\mathbb{Z}_{30}/Ker(\phi) \approx \phi(\mathbb{Z}_{30}) = G.$$

► Since $|\mathbb{Z}_{30}/Ker(\phi)| = |\mathbb{Z}_{30}|/|Ker(\phi)|$ must equal |G|, we have that $\frac{30}{|Ker(\phi)|} = 5 \implies |Ker(\phi)| = 6.$

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへで

- 4. If ϕ is a homomorphism from \mathbb{Z}_{30} onto a group of order 5, determine the kernel of ϕ .
 - ▶ Let $\phi : \mathbb{Z}_{30} \xrightarrow{onto} G$, where G is a group of order 5. Then by the 1st isomorphism theorem,

$$\mathbb{Z}_{30}/Ker(\phi) \approx \phi(\mathbb{Z}_{30}) = G.$$

Since
$$|\mathbb{Z}_{30}/Ker(\phi)| = |\mathbb{Z}_{30}|/|Ker(\phi)|$$
 must equal $|G|$, we have that
$$\frac{30}{|Ker(\phi)|} = 5 \Longrightarrow |Ker(\phi)| = 6.$$

Because Z₃₀ is cyclic (of order 30), it has exactly one subgroup of order 6, so there's only one possibility for Ker(φ):

$$Ker(\phi) = <5> = \{0, 5, 10, 15, 20, 25\}.$$

Math 321-Abstract (Sklensky)

In-Class Work

November 29, 2010 6 / 8

Onto:

► Let $\phi : \mathbb{Z}_{20} \xrightarrow{onto} \mathbb{Z}_{10}$ be a homomorphism. $\mathbb{Z}_{20} = <1>$, so for all $n \in \mathbb{Z}_{20}$, $\phi(n) = \phi(1+\ldots+1 \mod 20) = \phi(1)+\ldots\phi(1) \mod 10 = n\phi(1) \mod 10$.

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ 三臣 - のへ⊙

Onto:

• Let
$$\phi : \mathbb{Z}_{20} \xrightarrow{onto} \mathbb{Z}_{10}$$
 be a homomorphism.
 $\mathbb{Z}_{20} = <1>$, so for all $n \in \mathbb{Z}_{20}$,
 $\phi(n) = \phi(1+\ldots+1 \mod 20) = \phi(1)+\ldots\phi(1) \mod 10 = n\phi(1) \mod 10$.

•
$$\phi$$
 is onto $\Rightarrow \forall \ k \in \mathbb{Z}_{10}, \ \exists \ n \text{ s.t. } k = \phi(n) = n\phi(1) = \phi(1) + \ldots + \phi(1)$

Onto:

- ► Let $\phi : \mathbb{Z}_{20} \xrightarrow{onto} \mathbb{Z}_{10}$ be a homomorphism. $\mathbb{Z}_{20} = <1>$, so for all $n \in \mathbb{Z}_{20}$, $\phi(n) = \phi(1+\ldots+1 \mod 20) = \phi(1)+\ldots\phi(1) \mod 10 = n\phi(1) \mod 10$.
- ϕ is onto $\Rightarrow \forall \ k \in \mathbb{Z}_{10}, \ \exists \ n \text{ s.t. } k = \phi(n) = n\phi(1) = \phi(1) + \ldots + \phi(1)$
- Since every element of Z₁₀ can be generated by φ(1), φ(1) must be one of the generators of Z₁₀.

Onto:

- Let $\phi : \mathbb{Z}_{20} \xrightarrow{onto} \mathbb{Z}_{10}$ be a homomorphism. $\mathbb{Z}_{20} = <1>$, so for all $n \in \mathbb{Z}_{20}$, $\phi(n) = \phi(1+\ldots+1 \mod 20) = \phi(1)+\ldots\phi(1) \mod 10 = n\phi(1) \mod 10$.
- ϕ is onto $\Rightarrow \forall \ k \in \mathbb{Z}_{10}, \ \exists \ n \text{ s.t. } k = \phi(n) = n\phi(1) = \phi(1) + \ldots + \phi(1)$
- Since every element of Z₁₀ can be generated by φ(1), φ(1) must be one of the generators of Z₁₀.
- Thus we must have φ(1) ∈ U(10) = {1,3,7,9}, so there are exactly 4 homomorphisms from Z₂₀ onto Z₁₀:

$$\phi(n) = n \quad \phi(n) = 3n \mod 10 \quad \phi(n) = 7n \mod 10 \quad \phi(n) = 9n \mod 10$$

Math 321-Abstract (Sklensky)

Not necessarily onto:

It is still true that φ(n) = nφ(1) for all n ∈ Z₂₀, so it is still true that any homomorphism from Z₂₀ to Z₁₀ is completely defined by where φ sends 1.

Not necessarily onto:

- It is still true that φ(n) = nφ(1) for all n ∈ Z₂₀, so it is still true that any homomorphism from Z₂₀ to Z₁₀ is completely defined by where φ sends 1.
- ▶ Because each homomorphism is completely defined by where φ sends 1, there's at most 1 homomorphism per destination in Z₁₀.

Not necessarily onto:

- It is still true that φ(n) = nφ(1) for all n ∈ Z₂₀, so it is still true that any homomorphism from Z₂₀ to Z₁₀ is completely defined by where φ sends 1.
- ▶ Because each homomorphism is completely defined by where φ sends 1, there's at most 1 homomorphism per destination in Z₁₀.
- On the other hand, 1 can go anywhere in Z₁₀: we'll always end up with 0 mapping to 0, because 0 = 20 ⋅ 1 mod 20 in Z₂₀, so φ(0) = 20φ(1) mod 10 = 0. Thus there's *at least* 1 homomorphism per destination.

Not necessarily onto:

- It is still true that φ(n) = nφ(1) for all n ∈ Z₂₀, so it is still true that any homomorphism from Z₂₀ to Z₁₀ is completely defined by where φ sends 1.
- ▶ Because each homomorphism is completely defined by where φ sends 1, there's at most 1 homomorphism per destination in Z₁₀.
- On the other hand, 1 can go anywhere in Z₁₀: we'll always end up with 0 mapping to 0, because 0 = 20 ⋅ 1 mod 20 in Z₂₀, so φ(0) = 20φ(1) mod 10 = 0. Thus there's *at least* 1 homomorphism per destination.
- Thus there are 10 possible homomorphisms from \mathbb{Z}_{20} into \mathbb{Z}_{10} .

Math 321-Abstract (Sklensky)

In-Class Work