
Recall: Chapter 7, Problem 6
If n be a positive integer, nZ = {0,±n,±2n,±3n, . . .}. There are exactly
n left cosets of nZ in Z:

0 + H = n + H = 2n + H = 3n + H = . . .

1 + H = (n + 1) + H = (2n + 1) + H = (3n + 1) + H = . . .

2 + H = (n + 2) + H = (2n + 2) + H = (3n + 2) + H = . . .
...

(n − 1) + H = (2n − 1) + H = (3n − 1) + H = (4n − 1) + H = . . .

I 2 cosets a + nZ and b + nZ are equal ⇔ b − a ∈ nZ.

I Recall: Just because aH = bH does not mean ah = bh for all (or
even any) h ∈ H. In our above example, which demonstrates the
additive case, 1 + H = (n + 1) + H, but of course there is no h ∈ H
for which 1 + h = n + 1 + h.
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Example, continued

Thus the set of all left cosets of nZ in Z is

S = {0 + nZ, 1 + nZ, 2 + nZ, . . . , (n − 1) + nZ}

Does this remind you of anything?

What if we write it as

S = {0, 1, 2, . . . , n − 1}?

It looks a lot like Zn = {0, 1, 2, . . . , n − 1}. Can we define an operation so
that S is a group?
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Example (continued):

Let

S = the set of all left cosets of nZ in Z
= {0 + nZ, 1 + nZ, 2 + nZ, . . . , (n − 1) + nZ}

What operation could we define that would make S a group?

Define (a + nZ) + (b + nZ)
def
= (a + b) + nZ.

Need to check that G is closed under this operation, the operation is

associative, there is an identity element in G , and G is closed under
inverses.

Math 321-Abstracti (Sklensky) In-Class Work November 3, 2010 3 / 17



Example (continued):

Let

S = the set of all left cosets of nZ in Z
= {0 + nZ, 1 + nZ, 2 + nZ, . . . , (n − 1) + nZ}

What operation could we define that would make S a group?

Define (a + nZ) + (b + nZ)
def
= (a + b) + nZ.

Need to check that G is closed under this operation, the operation is

associative, there is an identity element in G , and G is closed under
inverses.

Math 321-Abstracti (Sklensky) In-Class Work November 3, 2010 3 / 17



Example (continued):

Let

S = the set of all left cosets of nZ in Z
= {0 + nZ, 1 + nZ, 2 + nZ, . . . , (n − 1) + nZ}

What operation could we define that would make S a group?

Define (a + nZ) + (b + nZ)
def
= (a + b) + nZ.

Need to check that G is closed under this operation, the operation is

associative, there is an identity element in G , and G is closed under
inverses.

Math 321-Abstracti (Sklensky) In-Class Work November 3, 2010 3 / 17



Example (continued):
Let S = {0 + nZ, 1 + nZ, 2 + nZ, . . . , (n − 1) + nZ}, and define the
operation on S to be

(a + nZ) + (b + nZ)
def
= (a + b) + nZ.

I Is S closed under this operation?

I Since a + b ∈ Z, a + b + nZ is indeed one of the cosets of nZ in Z.
Thus S is closed under the operation.

I Since
[(a + nZ) + (b + nZ)] + (c + nZ) = (a + nZ) + [(b + nZ) + (c + nZ)],
the operation is associative.

I 0 + nZ acts as an identity:
I For all a + nZ ∈ S , −a + nZ is also in S , and of course −a + nZ is

the inverse of a + nZ:

(−a + nZ) + (a + nZ) = 0 + nZ.

Thus G is a group under the above operation.
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Example (continued):

Conclusion:

Let S = {0 + nZ, 1 + nZ, 2 + nZ, . . . , (n − 1) + nZ}, and define the
operation on S to be

(a + nZ) + (b + nZ)
def
= (a + b) + nZ.

S is a group.

Important Note: While the inverse of a + nZ is −a + nZ, it might not be
written like that.

Example: The inverse of 1 + nZ is −1 + nZ, but that coset doesn’t
appear in the above list of elements in G .
Remember, −1 + nZ = (n − 1) + nZ.
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Question:

Is this always true? If we’re given any group G , and any subgroup H, will
the set of left cosets {aH|a ∈ G} always be a group?
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Consider

S3 =
{
ε,
(
1 2

)
,
(
1 3

)
,
(
2 3

)
,
(
1 2 3

)
,
(
1 3 2

)
}
}
.
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Consider

S3 =
{
ε,
(
1 2

)
,
(
1 3

)
,
(
2 3

)
,
(
1 2 3

)
,
(
1 3 2

)
}
}
.

Let α =
(
1 2

)
, β =

(
1 2 3

)
.

Then β2 =
(
1 3 2

)
, αβ =

(
2 3

)
, and αβ2 =

(
1 3

)
.

Next consider the subgroup H =
{
ε,
(
1 2

)}
= {1, α}.
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By using a Cayley table, we can quickly find the set of all cosets of H in S3:
ε α β β2 αβ αβ2

ε ε α β β2 αβ αβ2

α α ε αβ αβ2 β β2

β β αβ2 β2 ε α αβ
β2 β2 αβ ε β αβ2 α
αβ αβ β2 αβ2 α ε β
αβ2 αβ2 β α αβ β2 ε

We can thus see that the
6

2
= 3 left cosets of H in S3 are:

εH = {ε, α} βH = {β, αβ2} αβH = {αβ, β2}
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The
6

2
= 3 left cosets of H in S3 are:

εH = {ε, α} βH = {β, αβ2} αβH = {αβ, β2}

Try to define an operation on the set of cosets analogously to the way we
did in our first example,

xH ◦ yH = (x ◦ y)H.
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The
6

2
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Thus βH = αβ2H, but βH ◦ αβH 6= (αβ2 ◦ αβ)H!
The operation isn’t even well-defined!
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Question:

For what groups G , and for what subgroups H, does the set of all left
(right) cosets of H in G form a group under the operation

aH ∗ bH
def
= (a ∗ b)H?
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Properties of cosets:

Let H be a subgroup of a group G , and let a and b belong to G . Then,

1. a ∈ aH

2. aH = H ⇐⇒ a ∈ H

3. aH = bH ⇐⇒ a ∈ bH

4. aH = bH or aH
⋂

bH = ∅
5. aH = bH ⇐⇒ a−1b ∈ H

6. |aH| = |bH| = |H|

7. aH = Ha⇐⇒ H = aHa−1

8. aH ≤ G ⇐⇒ a ∈ H

Analogous results hold for right cosets!
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Cayley table for S3

Let
α =

(
1 2

)
β =

(
1 2 3

)
β2 =

(
1 3 2

)
αβ =

(
2 3

)
αβ2 =

(
1 3

)
ε α β β2 αβ αβ2

ε ε α β β2 αβ αβ2

α α ε αβ αβ2 β β2

β β αβ2 β2 ε α αβ
β2 β2 αβ ε β αβ2 α
αβ αβ β2 αβ2 α ε β
αβ2 αβ2 β α αβ β2 ε
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In Class Work
Show that < R90 > /D4.
To make your life easier, here is the Cayley table for D4:

◦ R0 R90 R180 R270 H N V P

R0 R0 R90 R180 R270 H N V P

R90 R90 R180 R270 R0 P H N V

R180 R180 R270 R0 R90 V P H N

R270 R270 R0 R90 R180 N V P H

H H N V P R0 R90 R180 R270

N N V P H R270 R0 R90 R180

V V P H N R180 R270 R0 R90

P P H N V R90 R180 R270 R0
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Solutions:

Method 1: Using the definition of normal

Show that < R90 > /D4.

1. If a ∈< R90 >, then of course a < R90 >=< R90 >=< R90 > a, by
Property 1 of the lemma in Chapter 7.
Note: a < R90 > consists of all the rotations in D4.

2. If a 6∈< R90 >, then a is a reflection.
In that case (see the Cayley table), a < R90 > consists of all the
reflections in D4. Similarly, < R90 > a also consists of all the
reflections in D4. Thus a < R90 >=< R90 > a.

Conclusion: Thus no matter what a is, a < R90 >=< R90 > a, and so
< R90 > is normal.
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Solutions:

Method 2: Using one of our Results

Show that < R90 > /D4.

Since |D4| = 8 and | < R90 > | = 4,

[D4 :< R90 >] = 2,

and so by the example we just did, < R90 > must be normal.
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