Recall: Chapter 7, Problem 6 If *n* be a positive integer, $n\mathbb{Z} = \{0, \pm n, \pm 2n, \pm 3n, \ldots\}$. There are exactly *n* left cosets of $n\mathbb{Z}$ in \mathbb{Z} : $$0 + H = n + H = 2n + H = 3n + H = \dots$$ $$1 + H = (n+1) + H = (2n+1) + H = (3n+1) + H = \dots$$ $$2 + H = (n+2) + H = (2n+2) + H = (3n+2) + H = \dots$$ $$\vdots$$ $$(n-1) + H = (2n-1) + H = (3n-1) + H = (4n-1) + H = \dots$$ - ▶ 2 cosets $a + n\mathbb{Z}$ and $b + n\mathbb{Z}$ are equal $\Leftrightarrow b a \in n\mathbb{Z}$. - ▶ **Recall:** Just because aH = bH does not mean ah = bh for all (or even any) $h \in H$. In our above example, which demonstrates the additive case, 1 + H = (n+1) + H, but of course there is $no \ h \in H$ for which 1 + h = n + 1 + h. ### Example, continued Thus the set of all left cosets of $n\mathbb{Z}$ in \mathbb{Z} is $$S = \{0 + n\mathbb{Z}, 1 + n\mathbb{Z}, 2 + n\mathbb{Z}, \dots, (n-1) + n\mathbb{Z}\}$$ Does this remind you of anything? ### Example, continued Thus the set of all left cosets of $n\mathbb{Z}$ in \mathbb{Z} is $$S = \{0 + n\mathbb{Z}, 1 + n\mathbb{Z}, 2 + n\mathbb{Z}, \dots, (n-1) + n\mathbb{Z}\}$$ Does this remind you of anything? What if we write it as $$S = {\overline{0}, \overline{1}, \overline{2}, \dots, \overline{n-1}}$$? ### **Example**, continued Thus the set of all left cosets of $n\mathbb{Z}$ in \mathbb{Z} is $$S = \{0 + n\mathbb{Z}, 1 + n\mathbb{Z}, 2 + n\mathbb{Z}, \dots, (n-1) + n\mathbb{Z}\}$$ Does this remind you of anything? What if we write it as $$S = {\overline{0}, \overline{1}, \overline{2}, \dots, \overline{n-1}}$$? It looks a lot like $\mathbb{Z}_n = \{0, 1, 2, \dots, n-1\}$. Can we define an operation so that S is a group? Let $$S = \text{the set of all left cosets of } n\mathbb{Z} \text{ in } \mathbb{Z}$$ = $\{0 + n\mathbb{Z}, 1 + n\mathbb{Z}, 2 + n\mathbb{Z}, \dots, (n-1) + n\mathbb{Z}\}$ What operation could we define that would make S a group? 3 / 17 Let $$S =$$ the set of all left cosets of $n\mathbb{Z}$ in \mathbb{Z} = $\{0 + n\mathbb{Z}, 1 + n\mathbb{Z}, 2 + n\mathbb{Z}, \dots, (n-1) + n\mathbb{Z}\}$ What operation could we define that would make S a group? Define $$(a + n\mathbb{Z}) + (b + n\mathbb{Z}) \stackrel{def}{=} (a + b) + n\mathbb{Z}$$. Let $$S =$$ the set of all left cosets of $n\mathbb{Z}$ in \mathbb{Z} = $\{0 + n\mathbb{Z}, 1 + n\mathbb{Z}, 2 + n\mathbb{Z}, \dots, (n-1) + n\mathbb{Z}\}$ What operation could we define that would make S a group? Define $$(a + n\mathbb{Z}) + (b + n\mathbb{Z}) \stackrel{\text{def}}{=} (a + b) + n\mathbb{Z}$$. Need to check that G is closed under this operation, the operation is associative, there is an identity element in G, and G is closed under inverses. Let $S = \{0 + n\mathbb{Z}, 1 + n\mathbb{Z}, 2 + n\mathbb{Z}, \dots, (n-1) + n\mathbb{Z}\}$, and define the operation on S to be $$(a+n\mathbb{Z})+(b+n\mathbb{Z})\stackrel{def}{=}(a+b)+n\mathbb{Z}.$$ ▶ Is *S* closed under this operation? $$(a+n\mathbb{Z})+(b+n\mathbb{Z})\stackrel{def}{=}(a+b)+n\mathbb{Z}.$$ - ▶ Since $a + b \in \mathbb{Z}$, $a + b + n\mathbb{Z}$ is indeed one of the cosets of $n\mathbb{Z}$ in \mathbb{Z} . Thus S is closed under the operation. - ▶ Is the operation associative? Let $S = \{0 + n\mathbb{Z}, 1 + n\mathbb{Z}, 2 + n\mathbb{Z}, \dots, (n-1) + n\mathbb{Z}\}$, and define the operation on S to be $$(a + n\mathbb{Z}) + (b + n\mathbb{Z}) \stackrel{\text{def}}{=} (a + b) + n\mathbb{Z}.$$ - ▶ Since $a + b \in \mathbb{Z}$, $a + b + n\mathbb{Z}$ is indeed one of the cosets of $n\mathbb{Z}$ in \mathbb{Z} . Thus S is closed under the operation. - ▶ We can see below that the operation is associative: $$[(a + n\mathbb{Z}) + (b + n\mathbb{Z})] + (c + n\mathbb{Z})$$ $$= (a + b + n\mathbb{Z}) + (c + n\mathbb{Z})$$ $$= [(a + b) + c] + n\mathbb{Z}$$ $$= [a + (b + c)] + n\mathbb{Z}$$ $$= (a + n\mathbb{Z}) + (b + c + n\mathbb{Z})$$ $$= (a + n\mathbb{Z}) + [(b + n\mathbb{Z}) + (c + n\mathbb{Z})]$$ Thus the operation on S is associative. $$(a+n\mathbb{Z})+(b+n\mathbb{Z})\stackrel{def}{=}(a+b)+n\mathbb{Z}.$$ - ▶ Since $a + b \in \mathbb{Z}$, $a + b + n\mathbb{Z}$ is indeed one of the cosets of $n\mathbb{Z}$ in \mathbb{Z} . Thus S is closed under the operation. - Since $[(a+n\mathbb{Z})+(b+n\mathbb{Z})]+(c+n\mathbb{Z})=(a+n\mathbb{Z})+[(b+n\mathbb{Z})+(c+n\mathbb{Z})],$ the operation is associative. - ▶ Does *S* contain an identity element? $$(a+n\mathbb{Z})+(b+n\mathbb{Z})\stackrel{def}{=}(a+b)+n\mathbb{Z}.$$ - ▶ Since $a + b \in \mathbb{Z}$, $a + b + n\mathbb{Z}$ is indeed one of the cosets of $n\mathbb{Z}$ in \mathbb{Z} . Thus S is closed under the operation. - Since $[(a+n\mathbb{Z})+(b+n\mathbb{Z})]+(c+n\mathbb{Z})=(a+n\mathbb{Z})+[(b+n\mathbb{Z})+(c+n\mathbb{Z})],$ the operation is associative. - ▶ $0 + n\mathbb{Z}$ acts as an identity: $$(a+n\mathbb{Z})+(0+n\mathbb{Z}) = (a+0)+n\mathbb{Z} = a+n\mathbb{Z}$$ $$(0+n\mathbb{Z})+(a+n\mathbb{Z}) = (0+a)+n\mathbb{Z} = a+n\mathbb{Z}.$$ $$(a+n\mathbb{Z})+(b+n\mathbb{Z})\stackrel{def}{=}(a+b)+n\mathbb{Z}.$$ - ▶ Since $a + b \in \mathbb{Z}$, $a + b + n\mathbb{Z}$ is indeed one of the cosets of $n\mathbb{Z}$ in \mathbb{Z} . Thus S is closed under the operation. - Since $[(a+n\mathbb{Z})+(b+n\mathbb{Z})]+(c+n\mathbb{Z})=(a+n\mathbb{Z})+[(b+n\mathbb{Z})+(c+n\mathbb{Z})],$ the operation is associative. - ▶ $0 + n\mathbb{Z}$ acts as an identity: - ▶ Does every element of *S* have an inverse? $$(a+n\mathbb{Z})+(b+n\mathbb{Z})\stackrel{def}{=}(a+b)+n\mathbb{Z}.$$ - ▶ Since $a + b \in \mathbb{Z}$, $a + b + n\mathbb{Z}$ is indeed one of the cosets of $n\mathbb{Z}$ in \mathbb{Z} . Thus S is closed under the operation. - ▶ Since $[(a+n\mathbb{Z})+(b+n\mathbb{Z})]+(c+n\mathbb{Z})=(a+n\mathbb{Z})+[(b+n\mathbb{Z})+(c+n\mathbb{Z})],$ the operation is associative. - ▶ $0 + n\mathbb{Z}$ acts as an identity: - ▶ For all $a + n\mathbb{Z} \in S$, $-a + n\mathbb{Z}$ is also in S, and of course $-a + n\mathbb{Z}$ is the inverse of $a + n\mathbb{Z}$: $$(-a+n\mathbb{Z})+(a+n\mathbb{Z})=0+n\mathbb{Z}.$$ Let $S=\{0+n\mathbb{Z},1+n\mathbb{Z},2+n\mathbb{Z},\ldots,(n-1)+n\mathbb{Z}\}$, and define the operation on S to be $$(a+n\mathbb{Z})+(b+n\mathbb{Z})\stackrel{def}{=}(a+b)+n\mathbb{Z}.$$ - ▶ Since $a + b \in \mathbb{Z}$, $a + b + n\mathbb{Z}$ is indeed one of the cosets of $n\mathbb{Z}$ in \mathbb{Z} . Thus S is closed under the operation. - ▶ Since $[(a+n\mathbb{Z})+(b+n\mathbb{Z})]+(c+n\mathbb{Z})=(a+n\mathbb{Z})+[(b+n\mathbb{Z})+(c+n\mathbb{Z})],$ the operation is associative. - $ightharpoonup 0 + n\mathbb{Z}$ acts as an identity: - ▶ For all $a + n\mathbb{Z} \in S$, $-a + n\mathbb{Z}$ is also in S, and of course $-a + n\mathbb{Z}$ is the inverse of $a + n\mathbb{Z}$: $$(-a+n\mathbb{Z})+(a+n\mathbb{Z})=0+n\mathbb{Z}.$$ Thus G is a group under the above operation. #### **Conclusion:** Let $S = \{0 + n\mathbb{Z}, 1 + n\mathbb{Z}, 2 + n\mathbb{Z}, \dots, (n-1) + n\mathbb{Z}\}$, and define the operation on S to be $$(a+n\mathbb{Z})+(b+n\mathbb{Z})\stackrel{def}{=}(a+b)+n\mathbb{Z}.$$ S is a group. #### **Conclusion:** Let $S = \{0 + n\mathbb{Z}, 1 + n\mathbb{Z}, 2 + n\mathbb{Z}, \dots, (n-1) + n\mathbb{Z}\}$, and define the operation on S to be $$(a+n\mathbb{Z})+(b+n\mathbb{Z})\stackrel{def}{=}(a+b)+n\mathbb{Z}.$$ S is a group. **Important Note:** While the inverse of $a + n\mathbb{Z}$ is $-a + n\mathbb{Z}$, it might not be written like that. 5 / 17 #### **Conclusion:** Let $S = \{0 + n\mathbb{Z}, 1 + n\mathbb{Z}, 2 + n\mathbb{Z}, \dots, (n-1) + n\mathbb{Z}\}$, and define the operation on S to be $$(a+n\mathbb{Z})+(b+n\mathbb{Z})\stackrel{def}{=}(a+b)+n\mathbb{Z}.$$ S is a group. **Important Note:** While the inverse of $a + n\mathbb{Z}$ is $-a + n\mathbb{Z}$, it might not be written like that. **Example:** The inverse of $1 + n\mathbb{Z}$ is $-1 + n\mathbb{Z}$, but that coset doesn't appear in the above list of elements in G. #### **Conclusion:** Let $S = \{0 + n\mathbb{Z}, 1 + n\mathbb{Z}, 2 + n\mathbb{Z}, \dots, (n-1) + n\mathbb{Z}\}$, and define the operation on S to be $$(a+n\mathbb{Z})+(b+n\mathbb{Z})\stackrel{def}{=}(a+b)+n\mathbb{Z}.$$ S is a group. **Important Note:** While the inverse of $a + n\mathbb{Z}$ is $-a + n\mathbb{Z}$, it might not be written like that. **Example:** The inverse of $1 + n\mathbb{Z}$ is $-1 + n\mathbb{Z}$, but that coset doesn't appear in the above list of elements in G. Remember, $$-1 + n\mathbb{Z} = (n-1) + n\mathbb{Z}$$. ### **Question:** Is this always true? If we're given any group G, and any subgroup H, will the set of left cosets $\{aH|a\in G\}$ always be a group? 6 / 17 ### Consider $$S_3 = \{\epsilon, (1 \ 2), (1 \ 3), (2 \ 3), (1 \ 2 \ 3), (1 \ 3 \ 2)\}\}.$$ Consider $$\mathcal{S}_3 = \left\{ \epsilon, \begin{pmatrix} 1 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 3 \end{pmatrix}, \begin{pmatrix} 2 & 3 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \end{pmatrix}, \begin{pmatrix} 1 & 3 & 2 \end{pmatrix} \right\} \right\}.$$ Let $$\alpha = \begin{pmatrix} 1 & 2 \end{pmatrix}$$, $\beta = \begin{pmatrix} 1 & 2 & 3 \end{pmatrix}$. Then $\beta^2 = \begin{pmatrix} 1 & 3 & 2 \end{pmatrix}$, $\alpha\beta = \begin{pmatrix} 2 & 3 \end{pmatrix}$, and $\alpha\beta^2 = \begin{pmatrix} 1 & 3 \end{pmatrix}$. Next consider the subgroup $H = \{\epsilon, (1 \ 2)\} = \{1, \alpha\}$. By using a Cayley table, we can quickly find the set of all cosets of H in S_3 : We can thus see that the $\frac{6}{2} = 3$ left cosets of H in S_3 are: $$\epsilon H = \{\epsilon, \alpha\}$$ $\beta H = \{\beta, \alpha\beta^2\}$ $\alpha\beta H = \{\alpha\beta, \beta^2\}$ 9 / 17 The $\frac{6}{2} = 3$ left cosets of H in S_3 are: $$\epsilon H = \{\epsilon, \alpha\}$$ $\beta H = \{\beta, \alpha\beta^2\}$ $\alpha\beta H = \{\alpha\beta, \beta^2\}$ Try to define an operation on the set of cosets analogously to the way we did in our first example, $$xH \circ yH = (x \circ y)H$$. The $\frac{6}{2} = 3$ left cosets of H in S_3 are: $$\epsilon H = \{\epsilon, \alpha\}$$ $\beta H = \{\beta, \alpha\beta^2\}$ $\alpha\beta H = \{\alpha\beta, \beta^2\}$ Try to define an operation on the set of cosets analogously to the way we did in our first example, $$xH \circ yH = (x \circ y)H.$$ $$\beta H \circ \alpha \beta H = (\beta \circ \alpha \beta) H = \alpha H = \epsilon H$$ $$\alpha \beta^2 H \circ \alpha \beta H = (\alpha \beta^2 \circ \alpha \beta) H = \beta^2 H = \alpha \beta H$$ The $\frac{6}{2} = 3$ left cosets of H in S_3 are: $$\epsilon H = \{\epsilon, \alpha\}$$ $\beta H = \{\beta, \alpha\beta^2\}$ $\alpha\beta H = \{\alpha\beta, \beta^2\}$ Try to define an operation on the set of cosets analogously to the way we did in our first example, $$xH \circ yH = (x \circ y)H.$$ $$\beta H \circ \alpha \beta H = (\beta \circ \alpha \beta) H = \alpha H = \epsilon H$$ $$\alpha \beta^2 H \circ \alpha \beta H = (\alpha \beta^2 \circ \alpha \beta) H = \beta^2 H = \alpha \beta H$$ Thus $\beta H = \alpha \beta^2 H$, but $\beta H \circ \alpha \beta H \neq (\alpha \beta^2 \circ \alpha \beta) H$! The operation isn't even well-defined! ### **Question:** For what groups G, and for what subgroups H, does the set of all left (right) cosets of H in G form a group under the operation $aH*bH \stackrel{def}{=} (a*b)H$? ### **Properties of cosets:** Let H be a subgroup of a group G, and let a and b belong to G. Then, - 1. $a \in aH$ - 2. $aH = H \iff a \in H$ - 3. $aH = bH \iff a \in bH$ - 4. aH = bH or $aH \cap bH = \emptyset$ - 5. $aH = bH \iff a^{-1}b \in H$ - 6. |aH| = |bH| = |H| - 7. $aH = Ha \iff H = aHa^{-1}$ - 8. $aH \leq G \iff a \in H$ Analogous results hold for right cosets! # Cayley table for S_3 Let $$\alpha = \begin{pmatrix} 1 & 2 \end{pmatrix}$$ $\beta = \begin{pmatrix} 1 & 2 & 3 \end{pmatrix}$ $\beta^2 = \begin{pmatrix} 1 & 3 & 2 \end{pmatrix}$ $\alpha\beta = \begin{pmatrix} 2 & 3 \end{pmatrix}$ $\alpha\beta^2 = \begin{pmatrix} 1 & 3 \end{pmatrix}$ | | ϵ | α | β | eta^2 | $\alpha\beta$ | $lphaeta^2$ | |------------------|------------------|------------------|------------------|------------------|------------------|-----------------| | ϵ | ϵ | α | β | β^2 | $\alpha\beta$ | $\alpha\beta^2$ | | α | α | ϵ | $\alpha\beta$ | $\alpha \beta^2$ | β | eta^2 | | β | β | $\alpha \beta^2$ | β^2 | ϵ | α | $\alpha\beta$ | | β^2 | β^2 | $\alpha\beta$ | ϵ | β | $\alpha \beta^2$ | α | | $\alpha\beta$ | $\alpha\beta$ | β^2 | $\alpha \beta^2$ | α | ϵ | β | | $\alpha \beta^2$ | $\alpha \beta^2$ | β | α | $\alpha\beta$ | β^2 | ϵ | ### In Class Work Show that $\langle R_{90} \rangle \triangleleft D_4$. To make your life easier, here is the Cayley table for D_4 : | 0 | R_0 | R_{90} | R ₁₈₀ | R ₂₇₀ | Н | Ν | V | Р | |-------|-------|-----------|------------------|------------------|------------------|-----------|------------------|------------------| | R_0 | Ro | R_{00} | R100 | R ₂₇₀ | Н | Ν | V | Р | | | | | R_{270} | | P | Н | N | V | | | | R_{270} | | | V | Р | Н | Ν | | | | R_0 | | R ₁₈₀ | Ν | V | Р | Н | | Н | Н | Ν | V | Р | R_0 | R_{90} | R ₁₈₀ | R ₂₇₀ | | Ν | N | V | Р | Н | R ₂₇₀ | R_0 | R ₉₀ | R ₁₈₀ | | V | V | Р | Н | Ν | R ₁₈₀ | R_{270} | R_0 | R_{90} | | Ρ | P | Н | Ν | V | R_{90} | R_{180} | R_{270} | R_0 | ### Solutions: ### Method 1: Using the definition of normal Show that $\langle R_{90} \rangle \triangleleft D_4$. 1. If $a \in R_{00} >$, then of course $a < R_{00} > = R_{00} > = R_{00} > a$, by Property 1 of the lemma in Chapter 7. **Note:** $a < R_{00} > \text{consists of all the rotations in } D_4$. 2. If $a \notin \langle R_{90} \rangle$, then a is a reflection. In that case (see the Cayley table), $a < R_{90} >$ consists of all the reflections in D_4 . Similarly, $\langle R_{90} \rangle a$ also consists of all the reflections in D_4 . Thus $a < R_{00} > = < R_{00} > a$. **Conclusion:** Thus no matter what a is, $a < R_{90} > = < R_{90} > a$, and so $< R_{90} >$ is normal. ### **Solutions:** ### Method 2: Using one of our Results Show that $\langle R_{90} \rangle \triangleleft D_4$. Since $$|D_4| = 8$$ and $| < R_{90} > | = 4$, $$[D_4:< R_{90}>]=2,$$ and so by the example we just did, $< R_{90} >$ must be normal.