Recall: Chapter 7, Problem 6

If *n* be a positive integer, $n\mathbb{Z} = \{0, \pm n, \pm 2n, \pm 3n, \ldots\}$. There are exactly *n* left cosets of $n\mathbb{Z}$ in \mathbb{Z} :

$$0 + H = n + H = 2n + H = 3n + H = \dots$$

$$1 + H = (n+1) + H = (2n+1) + H = (3n+1) + H = \dots$$

$$2 + H = (n+2) + H = (2n+2) + H = (3n+2) + H = \dots$$

$$\vdots$$

$$(n-1) + H = (2n-1) + H = (3n-1) + H = (4n-1) + H = \dots$$

- ▶ 2 cosets $a + n\mathbb{Z}$ and $b + n\mathbb{Z}$ are equal $\Leftrightarrow b a \in n\mathbb{Z}$.
- ▶ **Recall:** Just because aH = bH does not mean ah = bh for all (or even any) $h \in H$. In our above example, which demonstrates the additive case, 1 + H = (n+1) + H, but of course there is $no \ h \in H$ for which 1 + h = n + 1 + h.

Example, continued

Thus the set of all left cosets of $n\mathbb{Z}$ in \mathbb{Z} is

$$S = \{0 + n\mathbb{Z}, 1 + n\mathbb{Z}, 2 + n\mathbb{Z}, \dots, (n-1) + n\mathbb{Z}\}$$

Does this remind you of anything?

Example, continued

Thus the set of all left cosets of $n\mathbb{Z}$ in \mathbb{Z} is

$$S = \{0 + n\mathbb{Z}, 1 + n\mathbb{Z}, 2 + n\mathbb{Z}, \dots, (n-1) + n\mathbb{Z}\}$$

Does this remind you of anything?

What if we write it as

$$S = {\overline{0}, \overline{1}, \overline{2}, \dots, \overline{n-1}}$$
?

Example, continued

Thus the set of all left cosets of $n\mathbb{Z}$ in \mathbb{Z} is

$$S = \{0 + n\mathbb{Z}, 1 + n\mathbb{Z}, 2 + n\mathbb{Z}, \dots, (n-1) + n\mathbb{Z}\}$$

Does this remind you of anything?

What if we write it as

$$S = {\overline{0}, \overline{1}, \overline{2}, \dots, \overline{n-1}}$$
?

It looks a lot like $\mathbb{Z}_n = \{0, 1, 2, \dots, n-1\}$. Can we define an operation so that S is a group?

Let

$$S = \text{the set of all left cosets of } n\mathbb{Z} \text{ in } \mathbb{Z}$$

= $\{0 + n\mathbb{Z}, 1 + n\mathbb{Z}, 2 + n\mathbb{Z}, \dots, (n-1) + n\mathbb{Z}\}$

What operation could we define that would make S a group?

3 / 17

Let

$$S =$$
 the set of all left cosets of $n\mathbb{Z}$ in \mathbb{Z}
= $\{0 + n\mathbb{Z}, 1 + n\mathbb{Z}, 2 + n\mathbb{Z}, \dots, (n-1) + n\mathbb{Z}\}$

What operation could we define that would make S a group?

Define
$$(a + n\mathbb{Z}) + (b + n\mathbb{Z}) \stackrel{def}{=} (a + b) + n\mathbb{Z}$$
.

Let

$$S =$$
 the set of all left cosets of $n\mathbb{Z}$ in \mathbb{Z}
= $\{0 + n\mathbb{Z}, 1 + n\mathbb{Z}, 2 + n\mathbb{Z}, \dots, (n-1) + n\mathbb{Z}\}$

What operation could we define that would make S a group?

Define
$$(a + n\mathbb{Z}) + (b + n\mathbb{Z}) \stackrel{\text{def}}{=} (a + b) + n\mathbb{Z}$$
.

Need to check that G is closed under this operation, the operation is

associative, there is an identity element in G, and G is closed under inverses.

Let $S = \{0 + n\mathbb{Z}, 1 + n\mathbb{Z}, 2 + n\mathbb{Z}, \dots, (n-1) + n\mathbb{Z}\}$, and define the operation on S to be

$$(a+n\mathbb{Z})+(b+n\mathbb{Z})\stackrel{def}{=}(a+b)+n\mathbb{Z}.$$

▶ Is *S* closed under this operation?

$$(a+n\mathbb{Z})+(b+n\mathbb{Z})\stackrel{def}{=}(a+b)+n\mathbb{Z}.$$

- ▶ Since $a + b \in \mathbb{Z}$, $a + b + n\mathbb{Z}$ is indeed one of the cosets of $n\mathbb{Z}$ in \mathbb{Z} . Thus S is closed under the operation.
- ▶ Is the operation associative?

Let $S = \{0 + n\mathbb{Z}, 1 + n\mathbb{Z}, 2 + n\mathbb{Z}, \dots, (n-1) + n\mathbb{Z}\}$, and define the operation on S to be

$$(a + n\mathbb{Z}) + (b + n\mathbb{Z}) \stackrel{\text{def}}{=} (a + b) + n\mathbb{Z}.$$

- ▶ Since $a + b \in \mathbb{Z}$, $a + b + n\mathbb{Z}$ is indeed one of the cosets of $n\mathbb{Z}$ in \mathbb{Z} . Thus S is closed under the operation.
- ▶ We can see below that the operation is associative:

$$[(a + n\mathbb{Z}) + (b + n\mathbb{Z})] + (c + n\mathbb{Z})$$

$$= (a + b + n\mathbb{Z}) + (c + n\mathbb{Z})$$

$$= [(a + b) + c] + n\mathbb{Z}$$

$$= [a + (b + c)] + n\mathbb{Z}$$

$$= (a + n\mathbb{Z}) + (b + c + n\mathbb{Z})$$

$$= (a + n\mathbb{Z}) + [(b + n\mathbb{Z}) + (c + n\mathbb{Z})]$$

Thus the operation on S is associative.

$$(a+n\mathbb{Z})+(b+n\mathbb{Z})\stackrel{def}{=}(a+b)+n\mathbb{Z}.$$

- ▶ Since $a + b \in \mathbb{Z}$, $a + b + n\mathbb{Z}$ is indeed one of the cosets of $n\mathbb{Z}$ in \mathbb{Z} . Thus S is closed under the operation.
- Since $[(a+n\mathbb{Z})+(b+n\mathbb{Z})]+(c+n\mathbb{Z})=(a+n\mathbb{Z})+[(b+n\mathbb{Z})+(c+n\mathbb{Z})],$ the operation is associative.
- ▶ Does *S* contain an identity element?

$$(a+n\mathbb{Z})+(b+n\mathbb{Z})\stackrel{def}{=}(a+b)+n\mathbb{Z}.$$

- ▶ Since $a + b \in \mathbb{Z}$, $a + b + n\mathbb{Z}$ is indeed one of the cosets of $n\mathbb{Z}$ in \mathbb{Z} . Thus S is closed under the operation.
- Since $[(a+n\mathbb{Z})+(b+n\mathbb{Z})]+(c+n\mathbb{Z})=(a+n\mathbb{Z})+[(b+n\mathbb{Z})+(c+n\mathbb{Z})],$ the operation is associative.
- ▶ $0 + n\mathbb{Z}$ acts as an identity:

$$(a+n\mathbb{Z})+(0+n\mathbb{Z}) = (a+0)+n\mathbb{Z} = a+n\mathbb{Z}$$
$$(0+n\mathbb{Z})+(a+n\mathbb{Z}) = (0+a)+n\mathbb{Z} = a+n\mathbb{Z}.$$

$$(a+n\mathbb{Z})+(b+n\mathbb{Z})\stackrel{def}{=}(a+b)+n\mathbb{Z}.$$

- ▶ Since $a + b \in \mathbb{Z}$, $a + b + n\mathbb{Z}$ is indeed one of the cosets of $n\mathbb{Z}$ in \mathbb{Z} . Thus S is closed under the operation.
- Since $[(a+n\mathbb{Z})+(b+n\mathbb{Z})]+(c+n\mathbb{Z})=(a+n\mathbb{Z})+[(b+n\mathbb{Z})+(c+n\mathbb{Z})],$ the operation is associative.
- ▶ $0 + n\mathbb{Z}$ acts as an identity:
- ▶ Does every element of *S* have an inverse?

$$(a+n\mathbb{Z})+(b+n\mathbb{Z})\stackrel{def}{=}(a+b)+n\mathbb{Z}.$$

- ▶ Since $a + b \in \mathbb{Z}$, $a + b + n\mathbb{Z}$ is indeed one of the cosets of $n\mathbb{Z}$ in \mathbb{Z} . Thus S is closed under the operation.
- ▶ Since $[(a+n\mathbb{Z})+(b+n\mathbb{Z})]+(c+n\mathbb{Z})=(a+n\mathbb{Z})+[(b+n\mathbb{Z})+(c+n\mathbb{Z})],$ the operation is associative.
- ▶ $0 + n\mathbb{Z}$ acts as an identity:
- ▶ For all $a + n\mathbb{Z} \in S$, $-a + n\mathbb{Z}$ is also in S, and of course $-a + n\mathbb{Z}$ is the inverse of $a + n\mathbb{Z}$:

$$(-a+n\mathbb{Z})+(a+n\mathbb{Z})=0+n\mathbb{Z}.$$

Let $S=\{0+n\mathbb{Z},1+n\mathbb{Z},2+n\mathbb{Z},\ldots,(n-1)+n\mathbb{Z}\}$, and define the operation on S to be

$$(a+n\mathbb{Z})+(b+n\mathbb{Z})\stackrel{def}{=}(a+b)+n\mathbb{Z}.$$

- ▶ Since $a + b \in \mathbb{Z}$, $a + b + n\mathbb{Z}$ is indeed one of the cosets of $n\mathbb{Z}$ in \mathbb{Z} . Thus S is closed under the operation.
- ▶ Since $[(a+n\mathbb{Z})+(b+n\mathbb{Z})]+(c+n\mathbb{Z})=(a+n\mathbb{Z})+[(b+n\mathbb{Z})+(c+n\mathbb{Z})],$ the operation is associative.
- $ightharpoonup 0 + n\mathbb{Z}$ acts as an identity:
- ▶ For all $a + n\mathbb{Z} \in S$, $-a + n\mathbb{Z}$ is also in S, and of course $-a + n\mathbb{Z}$ is the inverse of $a + n\mathbb{Z}$:

$$(-a+n\mathbb{Z})+(a+n\mathbb{Z})=0+n\mathbb{Z}.$$

Thus G is a group under the above operation.

Conclusion:

Let $S = \{0 + n\mathbb{Z}, 1 + n\mathbb{Z}, 2 + n\mathbb{Z}, \dots, (n-1) + n\mathbb{Z}\}$, and define the operation on S to be

$$(a+n\mathbb{Z})+(b+n\mathbb{Z})\stackrel{def}{=}(a+b)+n\mathbb{Z}.$$

S is a group.

Conclusion:

Let $S = \{0 + n\mathbb{Z}, 1 + n\mathbb{Z}, 2 + n\mathbb{Z}, \dots, (n-1) + n\mathbb{Z}\}$, and define the operation on S to be

$$(a+n\mathbb{Z})+(b+n\mathbb{Z})\stackrel{def}{=}(a+b)+n\mathbb{Z}.$$

S is a group.

Important Note: While the inverse of $a + n\mathbb{Z}$ is $-a + n\mathbb{Z}$, it might not be written like that.

5 / 17

Conclusion:

Let $S = \{0 + n\mathbb{Z}, 1 + n\mathbb{Z}, 2 + n\mathbb{Z}, \dots, (n-1) + n\mathbb{Z}\}$, and define the operation on S to be

$$(a+n\mathbb{Z})+(b+n\mathbb{Z})\stackrel{def}{=}(a+b)+n\mathbb{Z}.$$

S is a group.

Important Note: While the inverse of $a + n\mathbb{Z}$ is $-a + n\mathbb{Z}$, it might not be written like that.

Example: The inverse of $1 + n\mathbb{Z}$ is $-1 + n\mathbb{Z}$, but that coset doesn't appear in the above list of elements in G.

Conclusion:

Let $S = \{0 + n\mathbb{Z}, 1 + n\mathbb{Z}, 2 + n\mathbb{Z}, \dots, (n-1) + n\mathbb{Z}\}$, and define the operation on S to be

$$(a+n\mathbb{Z})+(b+n\mathbb{Z})\stackrel{def}{=}(a+b)+n\mathbb{Z}.$$

S is a group.

Important Note: While the inverse of $a + n\mathbb{Z}$ is $-a + n\mathbb{Z}$, it might not be written like that.

Example: The inverse of $1 + n\mathbb{Z}$ is $-1 + n\mathbb{Z}$, but that coset doesn't appear in the above list of elements in G.

Remember,
$$-1 + n\mathbb{Z} = (n-1) + n\mathbb{Z}$$
.

Question:

Is this always true? If we're given any group G, and any subgroup H, will the set of left cosets $\{aH|a\in G\}$ always be a group?

6 / 17

Consider

$$S_3 = \{\epsilon, (1 \ 2), (1 \ 3), (2 \ 3), (1 \ 2 \ 3), (1 \ 3 \ 2)\}\}.$$

Consider

$$\mathcal{S}_3 = \left\{ \epsilon, \begin{pmatrix} 1 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 3 \end{pmatrix}, \begin{pmatrix} 2 & 3 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \end{pmatrix}, \begin{pmatrix} 1 & 3 & 2 \end{pmatrix} \right\} \right\}.$$

Let
$$\alpha = \begin{pmatrix} 1 & 2 \end{pmatrix}$$
, $\beta = \begin{pmatrix} 1 & 2 & 3 \end{pmatrix}$.
Then $\beta^2 = \begin{pmatrix} 1 & 3 & 2 \end{pmatrix}$, $\alpha\beta = \begin{pmatrix} 2 & 3 \end{pmatrix}$, and $\alpha\beta^2 = \begin{pmatrix} 1 & 3 \end{pmatrix}$.

Next consider the subgroup $H = \{\epsilon, (1 \ 2)\} = \{1, \alpha\}$.

By using a Cayley table, we can quickly find the set of all cosets of H in S_3 :

We can thus see that the $\frac{6}{2} = 3$ left cosets of H in S_3 are:

$$\epsilon H = \{\epsilon, \alpha\}$$
 $\beta H = \{\beta, \alpha\beta^2\}$ $\alpha\beta H = \{\alpha\beta, \beta^2\}$

9 / 17

The $\frac{6}{2} = 3$ left cosets of H in S_3 are:

$$\epsilon H = \{\epsilon, \alpha\}$$
 $\beta H = \{\beta, \alpha\beta^2\}$ $\alpha\beta H = \{\alpha\beta, \beta^2\}$

Try to define an operation on the set of cosets analogously to the way we did in our first example,

$$xH \circ yH = (x \circ y)H$$
.

The $\frac{6}{2} = 3$ left cosets of H in S_3 are:

$$\epsilon H = \{\epsilon, \alpha\}$$
 $\beta H = \{\beta, \alpha\beta^2\}$ $\alpha\beta H = \{\alpha\beta, \beta^2\}$

Try to define an operation on the set of cosets analogously to the way we did in our first example,

$$xH \circ yH = (x \circ y)H.$$

$$\beta H \circ \alpha \beta H = (\beta \circ \alpha \beta) H = \alpha H = \epsilon H$$
$$\alpha \beta^2 H \circ \alpha \beta H = (\alpha \beta^2 \circ \alpha \beta) H = \beta^2 H = \alpha \beta H$$

The $\frac{6}{2} = 3$ left cosets of H in S_3 are:

$$\epsilon H = \{\epsilon, \alpha\}$$
 $\beta H = \{\beta, \alpha\beta^2\}$ $\alpha\beta H = \{\alpha\beta, \beta^2\}$

Try to define an operation on the set of cosets analogously to the way we did in our first example,

$$xH \circ yH = (x \circ y)H.$$

$$\beta H \circ \alpha \beta H = (\beta \circ \alpha \beta) H = \alpha H = \epsilon H$$
$$\alpha \beta^2 H \circ \alpha \beta H = (\alpha \beta^2 \circ \alpha \beta) H = \beta^2 H = \alpha \beta H$$

Thus $\beta H = \alpha \beta^2 H$, but $\beta H \circ \alpha \beta H \neq (\alpha \beta^2 \circ \alpha \beta) H$! The operation isn't even well-defined!

Question:

For what groups G, and for what subgroups H, does the set of all left (right) cosets of H in G form a group under the operation $aH*bH \stackrel{def}{=} (a*b)H$?

Properties of cosets:

Let H be a subgroup of a group G, and let a and b belong to G. Then,

- 1. $a \in aH$
- 2. $aH = H \iff a \in H$
- 3. $aH = bH \iff a \in bH$
- 4. aH = bH or $aH \cap bH = \emptyset$
- 5. $aH = bH \iff a^{-1}b \in H$
- 6. |aH| = |bH| = |H|
- 7. $aH = Ha \iff H = aHa^{-1}$
- 8. $aH \leq G \iff a \in H$

Analogous results hold for right cosets!

Cayley table for S_3

Let

$$\alpha = \begin{pmatrix} 1 & 2 \end{pmatrix}$$
 $\beta = \begin{pmatrix} 1 & 2 & 3 \end{pmatrix}$ $\beta^2 = \begin{pmatrix} 1 & 3 & 2 \end{pmatrix}$ $\alpha\beta = \begin{pmatrix} 2 & 3 \end{pmatrix}$ $\alpha\beta^2 = \begin{pmatrix} 1 & 3 \end{pmatrix}$

	ϵ	α	β	eta^2	$\alpha\beta$	$lphaeta^2$
ϵ	ϵ	α	β	β^2	$\alpha\beta$	$\alpha\beta^2$
α	α	ϵ	$\alpha\beta$	$\alpha \beta^2$	β	eta^2
β	β	$\alpha \beta^2$	β^2	ϵ	α	$\alpha\beta$
β^2	β^2	$\alpha\beta$	ϵ	β	$\alpha \beta^2$	α
$\alpha\beta$	$\alpha\beta$	β^2	$\alpha \beta^2$	α	ϵ	β
$\alpha \beta^2$	$\alpha \beta^2$	β	α	$\alpha\beta$	β^2	ϵ

In Class Work

Show that $\langle R_{90} \rangle \triangleleft D_4$.

To make your life easier, here is the Cayley table for D_4 :

0	R_0	R_{90}	R ₁₈₀	R ₂₇₀	Н	Ν	V	Р
R_0	Ro	R_{00}	R100	R ₂₇₀	Н	Ν	V	Р
			R_{270}		P	Н	N	V
		R_{270}			V	Р	Н	Ν
		R_0		R ₁₈₀	Ν	V	Р	Н
Н	Н	Ν	V	Р	R_0	R_{90}	R ₁₈₀	R ₂₇₀
Ν	N	V	Р	Н	R ₂₇₀	R_0	R ₉₀	R ₁₈₀
V	V	Р	Н	Ν	R ₁₈₀	R_{270}	R_0	R_{90}
Ρ	P	Н	Ν	V	R_{90}	R_{180}	R_{270}	R_0

Solutions:

Method 1: Using the definition of normal

Show that $\langle R_{90} \rangle \triangleleft D_4$.

1. If $a \in R_{00} >$, then of course $a < R_{00} > = R_{00} > = R_{00} > a$, by Property 1 of the lemma in Chapter 7.

Note: $a < R_{00} > \text{consists of all the rotations in } D_4$.

2. If $a \notin \langle R_{90} \rangle$, then a is a reflection. In that case (see the Cayley table), $a < R_{90} >$ consists of all the reflections in D_4 . Similarly, $\langle R_{90} \rangle a$ also consists of all the reflections in D_4 . Thus $a < R_{00} > = < R_{00} > a$.

Conclusion: Thus no matter what a is, $a < R_{90} > = < R_{90} > a$, and so $< R_{90} >$ is normal.

Solutions:

Method 2: Using one of our Results

Show that $\langle R_{90} \rangle \triangleleft D_4$.

Since
$$|D_4| = 8$$
 and $| < R_{90} > | = 4$,

$$[D_4:< R_{90}>]=2,$$

and so by the example we just did, $< R_{90} >$ must be normal.