Definition:

An isomorphism from a group to itself is called an **automorphism**.

Example:

$$\phi_{A}\left(\begin{bmatrix} a & b \\ c & d \end{bmatrix}\right) = A \begin{bmatrix} a & b \\ c & d \end{bmatrix} A^{-1}$$

$$= \left(\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix}\right) \cdot \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix}$$

$$= \left(\begin{bmatrix} a+c & b+d \\ c & d \end{bmatrix}\right) \cdot \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} a+c & (b+d)-(a+c) \\ c & d-c \end{bmatrix}$$

In Class Work

- 1. Let \mathbb{R}^+ be the group of positive real numbers under multiplication. Show that the mapping $\phi(x) = \sqrt{x}$ is an automorphism of \mathbb{R}^+ .
- 2. Find $Aut(\mathbb{Z})$.

Hint: It may be helpful to remember that $\mathbb{Z}=<1>$.

3. Let $r \in U(n)$. Prove that the mapping $\alpha : \mathbb{Z}_n \to \mathbb{Z}_n$ defined by $\alpha(s) = sr \mod n$ for all s in Z_n is an automorphism of \mathbb{Z}_n

3 / 1

- 1. Let \mathbb{R}^+ be the group of positive real numbers under multiplication. Show that the mapping $\phi(x) = \sqrt{x}$ is an automorphism of \mathbb{R}^+ .
 - well-defined? $x = y \Longrightarrow \sqrt{x} = \sqrt{y}$.
 - 1-1? $\phi(x) = \phi(y) \Longrightarrow \sqrt{x} = \sqrt{y} \Longrightarrow (\sqrt{x})^2 = (\sqrt{y})^2 \Longrightarrow x = y$.
 - **onto?** Let $y \in \mathbb{R}^+$. NTS $\exists x \in \mathbb{R}^+$ such that $\phi(x) = y$. That is, NTS $\exists x \in \mathbb{R}^+$ such that $\sqrt{x} = y$. Choose $x = y^2$. Then $\phi(x) = \sqrt{y^2} = y$ (since y positive)
 - operation preserving? $\phi(xy) = \sqrt{xy} = \sqrt{x}\sqrt{y} = \phi(x)\phi(y)$.

Thus ϕ is indeed an automorphism of \mathbb{R}^+ .

2. Find $Aut(\mathbb{Z})$.

Let $\phi: \mathbb{Z} \to \mathbb{Z}$ be any automorphism on \mathbb{Z} .

 \mathbb{Z} is of course cyclic, generated by 1.

Property 4, Thm 6.2 $\Longrightarrow \phi(1)$ must also generate \mathbb{Z} .

From hw, you know $\mathbb{Z} = <1> = <-1>$; no other generators Thus $\phi(1)$ must be either 1 or -1.

▶ Case 1: $\phi(1) = 1$. Then for all $n \in \mathbb{Z}$,

$$\phi(n) = \phi(n \cdot 1) = \phi("1^{n}") = "[\phi(1)]^{n}" = n \cdot \phi(1) = n.$$

Since $\phi(n) = n$ for all $n \in \mathbb{Z}$, ϕ is the identity function.

▶ Case 2: $\phi(1) = -1$. Then for all $n \in \mathbb{Z}$,

$$\phi(n) = \phi(n \cdot 1) = n \cdot \phi(1) = -n.$$

Thus $Aut(\mathbb{Z}) = \{id, f\}$, where f is the function that sends every element to its inverse. 4日 → 4周 → 4 差 → 4 差 → 9 9 0 0

- 3. Let $r \in U(n)$. Prove that the mapping $\alpha : \mathbb{Z}_n \to \mathbb{Z}_n$ defined by $\alpha(s) = sr \mod n$ for all s in Z_n is an automorphism of \mathbb{Z}_n
 - well-defined?

$$s = t \mod n \Longrightarrow sr \mod n = tr \mod n$$
.

1-1?

$$\alpha(s) = \alpha(t) \implies sr \mod n = tr \mod n$$

$$\implies n|(sr - tr)$$

$$\implies n|(s - t)r.$$

Since $r \in U(n)$, we know that gcd(n, r) = 1, and so if n|(s - t)r, we must have that n|s - t, and so $s = t \mod n$.

- 3. (continued)
 - **onto?** Let $y \in \mathbb{Z}_n$. NTS $\exists x \in \mathbb{Z}_n$ such that $\alpha(x) = y$. That is, NTS $\exists x \in \mathbb{Z}_n$ such that $xr = y \mod n$.

$$gcd(n,r) = 1 \implies \exists a,b \in \mathbb{Z} \text{ such that } an + br = 1$$
 $\implies \exists a,b \in \mathbb{Z} \text{ such that } (ya)n + (yb)r = y$
 $\implies \exists a,b \in \mathbb{Z} \text{ such that } (yb)r = y \mod n$

Let $x = yb \mod n$. Then $\alpha(x) = (yb \mod n)r = y \mod n$, so α is onto.

operation-preserving?

Let
$$a, b \in \mathbb{Z}_n$$
.

$$\alpha(a+b \mod n) = (a+b \mod n)r = ar+br \mod n = \alpha(a)+\alpha(b).$$

Thus α is indeed an automorphism of \mathbb{Z}_n .

Math 321-Abstracti (Sklensky)

In-Class Work

October 15, 2010

7 / 1