Recall:

- Lagrange's Theorem: If G is a finite group and H is a subgroup of G, then |H| divides G. Moreover, the number of distinct left (right) cosets of H in G, [G : H], is ^{|G|}/_{|H|}.
- Corollary 2: In a finite group, the order of each element of the group divides the order of the group. That is, |a| divides |G| for all a ∈ G, when |G| is finite.
- Corollary 3: A group of prime order is cyclic.
- **Corollary 4:** Let G be finite and $a \in G$. Then $a^{|G|} = e$.
- ► Corollary 5: Fermat's Little Theorem: For every integer *a* and every prime *p*, $a^p \mod p = a \mod p$.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ろのぐ

Theorem: Every group of order 2p (*p* prime) is either isomorphic to \mathbb{Z}_{2p} or D_p .

Step 2 of proof: If |a| = p, show every element in $G \setminus a$ has order 2. Assume $\exists b \in G \setminus a$ such that $|b| \neq 2$.

 $|b| \neq 1$, since $b \neq e$; $|b| \neq 2p$, since G isn't cyclic. Thus |b| = p.

 $\langle b \rangle \neq \langle a \rangle$, since $b \notin \langle a \rangle$.

Suppose $\langle a \rangle \cap \langle b \rangle \neq \{e\}$. Then there exist $i, j \in \{1, 2, \dots, p-1\}$ such that $b^i = a^j$.

|| prime $\implies b^i$ generates , so $\exists k \ni b = (b^i)^k = (a^j)^k \in <a>$. - \times -

Thus $\langle a \rangle \cap \langle b \rangle = \{e\}$, so $|\langle a \rangle \cup \langle b \rangle| = p + (p - 1)$, leaving only one element unaccounted for.

Yet there are *p* distinct elements of the form ba^k , none of which can be in $\langle a \rangle$ or in $\langle b \rangle$. \rightarrow Thus |b| = 2.

Math 321-Abstracti (Sklensky)

Theorem: Every group of order 2p (p prime) is either isomorphic to \mathbb{Z}_{2p} or D_p .

Step 3 of proof: All non-cyclic groups of order 2p are isomorphic. $\exists a \in G \text{ with } |a| = p$, and $\exists b \in G \text{ with } |b| = 2$. Lagrange's Theorem $\Rightarrow \exists \text{ exactly } \frac{2p}{p} = 2 \text{ cosets of } \langle a \rangle \text{ in } G$; since

 $b \notin \langle a \rangle$, the two cosets are $\langle a \rangle$ and $b \langle a \rangle$.

Thus:

$$G = \{e, a, a^2, \dots, a^{p-1}, b, ba, ba^2, \dots, ba^{p-1}\}.$$

 $\forall i = 1, 2, \dots, p-1$, $a^i b \in G$, and obviously $a^i b \notin \langle a \rangle$, so $|a^i b| = 2$.

Thus

$$a^{i}b = (a^{i}b)^{-1} = b^{-1}a^{-i-} = ba^{-i} = ba^{p-i}$$

Thus the Cayley table for any non-cylic group of order 2p is completely determined; this ends up meaning that all are isomorphic to each other.

Math 321-Abstracti (Sklensky)

2. Suppose that G is an Abelian group with an odd number of elements. Show that the product of all of the elements of G must be the identity.

3. Suppose that G is a group with more than one element, and that G has no proper non-trivial subgroups. Prove that |G| is prime. (Do not assume at the outset that |G| is finite).

4. Show that in a group G of odd order, the equation $x^2 = a$ has a unique solution for all $a \in G$.

Math 321-Abstracti (Sklensky)

In-Class Work

If |G| = 91, show that G has an element of order 7.
Hint 1: What are the only possible orders elements of G can have?

2. Suppose that G is an Abelian group with an odd number of elements. Show that the product of all of the elements of G must be the identity.

3. Suppose that G is a group with more than one element, and that G has no proper non-trivial subgroups. Prove that |G| is prime. (Do not assume at the outset that |G| is finite).

4. Show that in a group G of odd order, the equation $x^2 = a$ has a unique solution for all $a \in G$.

Math 321-Abstracti (Sklensky)

In-Class Work

- 1. If $|\mathbf{G}| = 91$, show that **G** has an element of order 7. Hint 1: What are the only possible orders elements of G can have? Hint 2: If $a \in G$ and |a| = 91, can you find an element with order 7?
- 2. Suppose that G is an Abelian group with an odd number of elements. Show that the product of all of the elements of G must be the identity.

3. Suppose that G is a group with more than one element, and that G has no proper non-trivial subgroups. Prove that |G| is prime. (Do not assume at the outset that |G| is finite).

4. Show that in a group G of odd order, the equation $x^2 = a$ has a unique solution for all $a \in G$.

Math 321-Abstracti (Sklensky)

In-Class Work

- Hint 1: What are the only possible orders elements of G can have? Hint 2: If $a \in G$ and |a| = 91, can you find an element with order 7? Hint 3: Is it possible for every non-identity element to have order 13?
- 2. Suppose that G is an Abelian group with an odd number of elements. Show that the product of all of the elements of G must be the identity.

3. Suppose that G is a group with more than one element, and that G has no proper non-trivial subgroups. Prove that |G| is prime. (Do not assume at the outset that |G| is finite).

4. Show that in a group G of odd order, the equation $x^2 = a$ has a unique solution for all $a \in G$.

Math 321-Abstracti (Sklensky)

In-Class Work

- Hint 1: What are the only possible orders elements of G can have? Hint 2: If $a \in G$ and |a| = 91, can you find an element with order 7? Hint 3: Is it possible for every non-identity element to have order 13?
- 2. Suppose that G is an Abelian group with an odd number of elements. Show that the product of all of the elements of G must be the identity.

Hint 1: What does it mean for a number to be odd?

3. Suppose that G is a group with more than one element, and that G has no proper non-trivial subgroups. Prove that |G| is prime. (Do not assume at the outset that |G| is finite).

4. Show that in a group G of odd order, the equation $x^2 = a$ has a unique solution for all $a \in G$.

Math 321-Abstracti (Sklensky)

In-Class Work

- Hint 1: What are the only possible orders elements of G can have? Hint 2: If $a \in G$ and |a| = 91, can you find an element with order 7? Hint 3: Is it possible for every non-identity element to have order 13?
- 2. Suppose that G is an Abelian group with an odd number of elements. Show that the product of all of the elements of G must be the identity.

Hint 1: What does it mean for a number to be odd? Hint 2: Remember Lagrange's Thm and its corollaries

3. Suppose that G is a group with more than one element, and that G has no proper non-trivial subgroups. Prove that |G| is prime. (Do not assume at the outset that |G| is finite).

4. Show that in a group G of odd order, the equation $x^2 = a$ has a unique solution for all $a \in G$.

Math 321-Abstracti (Sklensky)

In-Class Work

- Hint 1: What are the only possible orders elements of G can have? Hint 2: If $a \in G$ and |a| = 91, can you find an element with order 7? Hint 3: Is it possible for every non-identity element to have order 13?
- 2. Suppose that G is an Abelian group with an odd number of elements. Show that the product of all of the elements of G must be the identity.

Hint 1: What does it mean for a number to be odd? Hint 2: Remember Lagrange's Thm and its corollaries Hint 3: What is distinctive about elements of order 2?

3. Suppose that G is a group with more than one element, and that G has no proper non-trivial subgroups. Prove that |G| is prime. (Do not assume at the outset that |G| is finite).

4. Show that in a group G of odd order, the equation $x^2 = a$ has a unique solution for all $a \in G$.

Math 321-Abstracti (Sklensky)

- Hint 1: What are the only possible orders elements of G can have? Hint 2: If $a \in G$ and |a| = 91, can you find an element with order 7? Hint 3: Is it possible for every non-identity element to have order 13?
- 2. Suppose that G is an Abelian group with an odd number of elements. Show that the product of all of the elements of G must be the identity.

Hint 1: What does it mean for a number to be odd? Hint 2: Remember Lagrange's Thm and its corollaries Hint 3: What is distinctive about elements of order 2?

Suppose that G is a group with more than one element, and that G has no proper non-trivial subgroups. Prove that |G| is prime. (Do not assume at the outset that |G| is finite). Hint 1: Break into cases - G is cyclic and G is not cyclic.

4. Show that in a group G of odd order, the equation $x^2 = a$ has a unique solution for all $a \in G$.

Math 321-Abstracti (Sklensky)

- Hint 1: What are the only possible orders elements of G can have? Hint 2: If $a \in G$ and |a| = 91, can you find an element with order 7? Hint 3: Is it possible for every non-identity element to have order 13?
- 2. Suppose that G is an Abelian group with an odd number of elements. Show that the product of all of the elements of G must be the identity.

Hint 1: What does it mean for a number to be odd? Hint 2: Remember Lagrange's Thm and its corollaries Hint 3: What is distinctive about elements of order 2?

- 3. Suppose that G is a group with more than one element, and that G has no proper non-trivial subgroups. Prove that |G| is prime. (Do not assume at the outset that |G| is finite). Hint 1: Break into cases G is cyclic and G is not cyclic. Hint 2: If G is not cyclic, what does |G| > 1 tell you?
- 4. Show that in a group G of odd order, the equation $x^2 = a$ has a unique solution for all $a \in G$.

Math 321-Abstracti (Sklensky)

- Hint 1: What are the only possible orders elements of G can have? Hint 2: If $a \in G$ and |a| = 91, can you find an element with order 7? Hint 3: Is it possible for every non-identity element to have order 13?
- 2. Suppose that G is an Abelian group with an odd number of elements. Show that the product of all of the elements of G must be the identity.

Hint 1: What does it mean for a number to be odd? Hint 2: Remember Lagrange's Thm and its corollaries Hint 3: What is distinctive about elements of order 2?

- 3. Suppose that G is a group with more than one element, and that G has no proper non-trivial subgroups. Prove that |G| is prime. (Do not assume at the outset that |G| is finite). Hint 1: Break into cases G is cyclic and G is not cyclic. Hint 2: If G is not cyclic, what does |G| > 1 tell you? Hint 3: If G is cyclic, what does it mean to have infinite order?
- 4. Show that in a group G of odd order, the equation $x^2 = a$ has a unique solution for all $a \in G$.

Math 321-Abstracti (Sklensky)

- 1. If |G| = 91, show that G has an element of order 7.
 - For all $a \in G$, |a| divides $91 \implies |a| = 1$, 7, 13, or 91.

If there is an $a \in G$ with |a| = 91, then a^{13} has order 7.

Thus if G does *not* have *any* elements of order 7, every non-identity element must have order 13. Is this possible?

Elements of order 13 come in chunks of 12: if |a| = 13, then $|a^2|, |a^3|, \ldots, |a^{12}| = 13$ also.

There can be no overlap between two cyclic subgroups of order 13. That is, if $b \in G$, |b| = 13, $b \notin \langle a \rangle$, then $b^k \notin \langle a \rangle \forall 1 \leq k < 13$. For suppose $b^k \in \langle a \rangle$, $b^k \neq e$. Then $\langle b^k \rangle \subseteq \langle a \rangle$. But $\langle b^k \rangle = \langle b \rangle$.

Since 12 does not divide 90 (the number of non-identity elements), there must be some elements that are not of order 13. Thus there must be elements of order 7.

Math 321-Abstracti (Sklensky)

2. Suppose that G is an Abelian group with an odd number of elements. Show that the product of all of the elements of G must be the identity.

 $|G| = 2k + 1 \Rightarrow \exists$ even number of non-identity elements.

2 $||G| \Rightarrow A$ element of order 2 by Corollary 2 to Lagrange's Theorem ⇒ no element is its own inverse

Let a_1, a_2, \ldots, a_k be k distinct non-identity elements of G, non of which are inverses of each other.

G Abelian \Rightarrow we can write the product of the elements of G as

$$e * a_1 * a_1^{-1} * a_2 * a_2^{-1} * \dots a_k * a_k^{-1},$$

and this product is clearly e.

Math 321-Abstracti (Sklensky)

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ろのぐ

3. Suppose that G is a group with more than one element, and that G has no proper non-trivial subgroups. Prove that |G| is prime. (Do not assume at the outset that |G| is finite).

$$|G| > 1 \Rightarrow a \neq e.$$

Case 1: $G \neq < a >$.

Because $a \neq e$, $\{e\} \subset \langle a \rangle$, and because $a \in G$ but $G \neq \langle a \rangle$, we know $\langle a \rangle \subset G$. Thus $\langle a \rangle$ is a proper subgroup of G. \rightarrow -Case 2: $G = \langle a \rangle$.

If $|G| = \infty$, then $|a| = \infty$, and so there does not exist $i \neq j$ such that $a^i = a^j$. Thus $a \notin < a^2 >$, and so $\{e\} \subset <a^2 > \subset <a > \rightarrow -$.

Thus $|G| = n < \infty$.

If *n* is not prime, the FToCG \Rightarrow there is one subgroup for each divisor. Thu *n* must be prime.

Math 321-Abstracti (Sklensky)

▲□▶ ▲□▶ ▲ヨ▶ ▲ヨ▶ ヨー つくで

- 4. Show that in a group G of odd order, the equation x² = a has a unique solution for all a ∈ G. The equation x² = a for some a ∈ G would not have a unique solution if
 - there exists $g, h \in G$ such that $g^2 = h^2$. or
 - there is no $g \in G$ such that $g^2 = a$

In other words, the equation $x^2 = a$ has a unique solution for all $a \in G \Leftrightarrow$ the mapping $\phi : G \to G$ is one-to-one and onto.

From your last problem set, you know that ϕ is an automorphism of G if there is no element of order 2 in G.

Since |G| is odd, there *is* no element of order 2, and so ϕ *is* one-to-one and onto.

Math 321-Abstracti (Sklensky)

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ろのぐ