In Class Work

1. Is $\mathbb{Z}_6 = \{0, 1, 2, 3, 4, 5\}$ a group under multiplication mod 6?

September 10, 2010 1 / 7

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 … のへで

Math 321-Abstracti (Sklensky)

In-Class Work

Let G be a non-empty set with a binary operation. If a and b are both elements of G, denote the result of the operation on the pair (a, b) by ab.

Note: when we don't know what the elements of G are, and we don't know the operation, we use multiplication notation, as above. If we **do** know the operation, then we would of course use whatever the appropriate notation would be.

イロト イポト イヨト イヨト 二日

Let G be a non-empty set with a binary operation. If a and b are both elements of G, denote the result of the operation on the pair (a, b) by ab.

Note: when we don't know what the elements of G are, and we don't know the operation, we use multiplication notation, as above. If we **do** know the operation, then we would of course use whatever the appropriate notation would be.

Then we say that G is a **group** under the operation if the following are satisfied:

イロト イポト イヨト イヨト 二日

Let G be a non-empty set with a binary operation. If a and b are both elements of G, denote the result of the operation on the pair (a, b) by ab.

Note: when we don't know what the elements of G are, and we don't know the operation, we use multiplication notation, as above. If we **do** know the operation, then we would of course use whatever the appropriate notation would be.

Then we say that G is a **group** under the operation if the following are satisfied:

1. Associativity: (ab)c = a(bc) for all $a, b, c \in G$.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三日 うらぐ

Let G be a non-empty set with a binary operation. If a and b are both elements of G, denote the result of the operation on the pair (a, b) by ab.

Note: when we don't know what the elements of G are, and we don't know the operation, we use multiplication notation, as above. If we **do** know the operation, then we would of course use whatever the appropriate notation would be.

Then we say that G is a **group** under the operation if the following are satisfied:

1. Associativity: (ab)c = a(bc) for all $a, b, c \in G$.

2. *Identity:* There exists $e \in G$ such that ae = ea = a for all $a \in G$.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三日 うらぐ

Let G be a non-empty set with a binary operation. If a and b are both elements of G, denote the result of the operation on the pair (a, b) by ab.

Note: when we don't know what the elements of G are, and we don't know the operation, we use multiplication notation, as above. If we **do** know the operation, then we would of course use whatever the appropriate notation would be.

Then we say that G is a **group** under the operation if the following are satisfied:

- 1. Associativity: (ab)c = a(bc) for all $a, b, c \in G$.
- 2. *Identity:* There exists $e \in G$ such that ae = ea = a for all $a \in G$.
- 3. *Inverse:* For every $a \in G$, there exists $b \in G$ such that ab = ba = e.

More Definitions:

- Let G be a set. An operation ∗ is a binary operation on G if for all g, h ∈ G, g ∗ h ∈ G.
- G is closed under the operation ∗, if ∗ is binary; that is, if for all g, h ∈ G, g ∗ h ∈ G.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三日 うらぐ

When checking whether G is a group, check

- Closed under the operation-for all $a, b \in G$, ab must also be in G.
- Associative
- Identity
- Inverses

Cayley Table for \mathbb{Z}_6 under multiplication mod 6:

\times mod 6	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	1	2	3	4	5
2	0	2	4	0	2	4
3	0	3	0	3	0	3
4	0	4	2	0	4	2
5	0	5	4	3	2	1

Math 321-Abstracti (Sklensky)

In-Class Work

September 10, 2010 5 / 7

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 臣 の久で

More In Class Work

1. Is $S = \{f : \mathbb{R} \to \mathbb{R} | f \text{ is one-to-one and onto} \}$ a group under composition?

Math 321-Abstracti (Sklensky)

In-Class Work

September 10, 2010 6 / 7

- Is *S* closed under the operation? *Showed this earlier!*
- Is o associative?

Let $f, g, h \in S$. Is $f \circ (g \circ h) = (f \circ g) \circ h$? We know that composition is associative.

Is there an element which acts as an identity in S? In other words, is there a function e in S so that f ∘ e = f = e ∘ f? Consider the *identity* function e : ℝ → ℝ so that e(x) = x. e is clearly in S (just check each of the requirements in the definition of S), and equally clearly, f ∘ e = f = e ∘ f. Thus there *is* an identity element in S.

For all f ∈ S, does there exist g ∈ S such that f ∘ g = e? Since f is 1-1 and onto, there exists an inverse function f⁻¹ such that f ∘ f⁻¹ = e = f⁻¹ ∘ f. But is f⁻¹ in S? f⁻¹ : ℝ → ℝ, and is also 1-1 and onto (check!), so f⁻¹ must be in S also. Thus every element in S has an inverse element in S.

Therefore S is a group.

Math 321-Abstracti (Sklensky)