In Class Work

- 1. What is **the order of** D_4 ? That is, what is $|D_4|$?
- 2. In D_4 , what is **the order of** the element H (reflection across the horizontal axis)? That is, what is |H|? How about the order of the rotation R_{90} , $|R_{90}|$?
- 3. What is $|GL(2,\mathbb{R})|$?
- 4. In \mathbb{Z}_8 , what is |2|? How about |3|?

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三日 うらぐ

- 1. What is the order of D_4 ? That is, what is $|D_4|$? Order of a group= the number of elements: $|D_4| = 8$.
- 2. In D_4 , what is *the order of* the element the reflection H, |H|? How about the order of the rotation R_{90} , $|R_{90}|$?

Order of an element = (in this case) smallest # of times we can do the motion to end up equivalent to the identity motion.

$$|H| = 2, |R_{90}| = 4.$$

3. What is $|GL(2,\mathbb{R})|$?

Since $GL(2,\mathbb{R})$ is the set of all 2×2 matrices with entries in \mathbb{R} and non-zero determinants, $|GL(2,\mathbb{R})| = \infty$.

Math 321-Abstracti (Sklensky)

4. In \mathbb{Z}_8 , what is |2|? How about |3|?

 $2 + 2 \mod 8 = 4$, $2 + 2 + 2 \mod 8 = 6$, $2 + 2 + 2 + 2 \mod 8 = 0$. Thus the smallest number of 2's we can add to get the identity is 4, so |2| = 4.

As for 3, we're not going to get to $3 + 3 + \ldots + 3 = 0 \mod 8$ until we have eight 3's.

(Check it out!)

Thus |3| = 8.

Cayley Table for D₄

0	R_0	R ₉₀	R ₁₈₀	R ₂₇₀	Н	Ν	V	Р
_		-	-	-		. /		-
R_0	R_0	R_{90}	R_{180}	R ₂₇₀	Н	N	V	Ρ
<i>R</i> ₉₀	R ₉₀	<i>R</i> ₁₈₀	R ₂₇₀	R_0	Ρ	Н	Ν	V
R ₁₈₀	R ₁₈₀	R ₂₇₀	R_0	R ₉₀	V	Ρ	Н	Ν
R ₂₇₀	R ₂₇₀	R_0	R ₉₀	R ₁₈₀	Ν	V	Ρ	Н
Н	Н	Ν	V	Р	R_0	R_{90}	R ₁₈₀	R ₂₇₀
Ν	N	V	Ρ	Н	R ₂₇₀	R_0	R ₉₀	R ₁₈₀
V	V		Н		R ₁₈₀	R ₂₇₀	R_0	R_{90}
Ρ	Ρ	Н	Ν	V	R ₉₀	R ₁₈₀	R ₂₇₀	R_0

< □ ▶ < □ ▶ < 三 ▶ < 三 ▶ < 三 ▶ 三 の Q ○ September 17, 2010 4 / 11

- 1. Is $\mathbb Z$ a subgroup of $\mathbb R,$ under addition?
- 2. Is \mathbb{Z}_5 a subgroup of \mathbb{Z} ?
- 3. Is U(10) a subgroup of \mathbb{Z}_{10} ?

Math 321-Abstracti (Sklensky)

In-Class Work

September 17, 2010 5 / 11

1. Is $\mathbb Z$ a subgroup of $\mathbb R,$ under addition?

We already know that both $(\mathbb{R},+)$ and $(\mathbb{Z},+)$ are groups. Because

- $\mathbb{Z} \subseteq \mathbb{R}$
- \mathbb{Z} is a group under the group operation of \mathbb{R}

 ${\mathbb Z}$ is a subgroup of ${\mathbb R}$ under addition, by the definition of a subgroup.

2. Is \mathbb{Z}_5 a subgroup of \mathbb{Z} ?

 $(\mathbb{Z}_5, + \mod 5)$ is a group and $(\mathbb{Z}, +)$ is a group.

- ▶ $\{0, 1, 2, 3, 4\} \subseteq \mathbb{Z}$
- The operations are not the same.

Therefore \mathbb{Z}_5 is not a subgroup of \mathbb{Z} .

2. Is U(10) a subgroup of \mathbb{Z}_{10} ?

U(10) is the set of all integers between 1 and 10 (inclusive) relatively prime to $10 \implies U(10) = \{1, 3, 7, 9\}.$

 $(U(10), \dots \text{ mod } 10)$ is a group and $(\mathbb{Z}_{10}, + \mod 10)$ is a group.

- $U(10) \subseteq \mathbb{Z}_{10}$
- The operations are not the same.

Therefore U(10) is not a subgroup of \mathbb{Z}_{10} .

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三日 うらぐ

Requirements for a Subset to be a Subgroup:

Let G be a group, and suppose that H is a subset of G – that is $H \subseteq G$. In order for H to be a subgroup of G ($H \leq G$), H must be a group under the operation of G.

That is, H must satisfy the following properties:

1. $H \neq \emptyset$.

- 2. *H* must be closed under the group operation of *G*. That is, for all $a, b \in H$, we must have $ab \in H$. (not just in *G*)
- 3. H must be associative under the group operation of G
- 4. *H* must have an identity element. That is, $e_G \in H$.
- 5. Every element in H must have an inverse also in H. That is, for all $a \in H$, we must have $a^{-1} \in H$ as well.

Math 321-Abstracti (Sklensky)

In-Class Work

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三日 うらぐ

THE 2-STEP SUBGROUP TEST:

Let (G, *) be a group and $H \subseteq G$. In order to show that $H \leq G$, it suffices to show:

- 1. non-empty: $H \neq \emptyset$
- 2. *H* is closed under *G*'s operation: For all $a, b \in H$, $ab \in H$.
- 3. Every element in H has an inverse again in H: For all $a \in H$, $a^{-1} \in H$.

Group A		Group B		Group C		Group [
Dan	Q_4	Alfred	М	Abbe	D_6	Luke	$U(24)^{2}$
Marie	\mathbb{C}_9^*	Becky	Н	Eric	\mathcal{T}_{\in}	Erin	$\mathbb{Q}_{2,3}$
Aubrie	\mathbb{C}_{10}	Stephanie	$GL(2,\mathbb{Z}_2)$	Tiffany	${\mathcal F}$	Laura	$\mathbb{Z}_2[x]$
Sam	$\mathbb{Z}[i]$	Roy	${\cal F}$	Rebecca	М	Shawn	U(13)
Christina	$\mathbb{Z}_2[x]$						

・ロト・(雪)・(ヨ)・(雪)・(ロ)