The 2-Step Subgroup Test:

Let (G, *) be a group and $H \subseteq G$. In order to show that $H \leq G$, it suffices to show:

- 0. non-empty: $H \neq \emptyset$
- 1. *H* is closed under *G*'s operation: For all $a, b \in H$, $ab \in H$.
- 2. Every element in H has an inverse again in H: For all $a \in H$, $a^{-1} \in H$.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三日 うらぐ

In Class Work

ls

$$\begin{aligned} 3\mathbb{Z} &= \{\dots, -9, -6, -3, 0, 3, 6, 9, \dots\} \\ &= \{3k | k \in \mathbb{Z}\} \end{aligned}$$

a subgroup of \mathbb{Z} ?

Math 321-Abstracti (Sklensky)

In-Class Work

September 20, 2010 2 / 6

Solution:

Is $3\mathbb{Z} = \{3k | k \in \mathbb{Z}\}$ a subgroup of \mathbb{Z} ?

- 3ℤ ≠ ∅, 3ℤ ⊆ ℤ, and they share the same operation.
 Use the 2-step subgroup test ...
- Closure: The group operation of Z is addition. Let a, b ∈ 3Z. NTS a + b ∈ 3Z.

$$a, b \in 3\mathbb{Z} \Longrightarrow \exists n, m \in \mathbb{Z} \ni a = 3n, b = 3m$$

 $\Longrightarrow a + b = 3n + 3m = 3(n + m)$

Since $n + m \in \mathbb{Z}$, $a + b \in 3\mathbb{Z}$, so $3\mathbb{Z}$ is closed.

Inverses: Let a ∈ 3Z. NTS the inverse of a is in 3Z.
 Since Z is an additive group, we know the inverse of a is -a.

$$a \in 3\mathbb{Z} \implies a = 3m$$
 for some $m \in \mathbb{Z}$
 $\implies -a = -3m = 3(-m)$ and $-m \in \mathbb{Z}$
 $\implies -a \in 3\mathbb{Z}$

Therefore $3\mathbb{Z} \leq \mathbb{Z}$.

Math 321-Abstracti (Sklensky)

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三日 うらぐ

Theorem 3.3:

(Finite Subgroup Test) Let G be a *finite* group and let H be a non-empty subset of G. If H is closed under the group operation, then $H \leq G$.

D_4

0	R_0	R_{90}	R ₁₈₀	R ₂₇₀	Н	Ν	V	Р
R_0	R_0	R ₉₀	R ₁₈₀	R ₂₇₀	Н	N	V	Р
R ₉₀	R ₉₀	R ₁₈₀	R ₂₇₀	R_0	Р	Н	Ν	V
R ₁₈₀	R ₁₈₀	R ₂₇₀	R_0	R ₉₀	V	Р	Н	Ν
R ₂₇₀	R ₂₇₀	R_0	R ₉₀	R ₁₈₀	Ν	V	Р	Н
Н	Н	Ν	V	Р	R_0	R ₉₀	R ₁₈₀	R ₂₇₀
Ν	Ν	V	Р	Н	R ₂₇₀	R_0	R_{90}	R ₁₈₀
V	V	Ρ	Н	Ν	R ₁₈₀	R ₂₇₀	R_0	R_{90}
Р	Р	Н	Ν	V	R_{90}	R ₁₈₀	R ₂₇₀	R_0

In Class Work

The Cayley table for $U(14) = \{1, 3, 5, 9, 11, 13\}$ is shown below. Find < 9 >, |9|, and | < 9 > |.

 mod 14 	1	3	5	9	11	13
1	1	3	5	9	11	13
3	3	9	1	13	5	11
5	5	1	11	3	13	9
9	9	13	3	11	1	5
11	11	5	13	1	9	3
13	13	11	9	5	3	1

▲□▶ ▲□▶ ▲ヨ▶ ▲ヨ▶ ヨ のの⊙