Question: If a group G is **not** Abelian, can there exist an element in G that commutes with *all* other elements?

				D_4				
0	R ₀	R ₉₀	R ₁₈₀	R ₂₇₀	Н	Ν	V	Ρ
R_0	R ₀	R_{90}	R ₁₈₀	R ₂₇₀	Н	N	V	Р
R ₉₀	R ₉₀	R ₁₈₀	R ₂₇₀	R_0	Ρ	Н	Ν	V
R ₁₈₀	R ₁₈₀	R ₂₇₀	R_0	R ₉₀	V	Ρ	Н	Ν
R ₂₇₀	R ₂₇₀	R_0	R ₉₀	R ₁₈₀	Ν	V	Ρ	Н
Н	Н	Ν	V	Р	R_0	R_{90}	R ₁₈₀	R ₂₇₀
Ν	N	V	Ρ	Н	R ₂₇₀	R_0	R ₉₀	R ₁₈₀
V	V	Ρ	Н	Ν	R ₁₈₀	R ₂₇₀	R_0	R_{90}
Ρ	Р	Н	Ν	V	R ₉₀	R ₁₈₀	R ₂₇₀	R_0

- 31

(a)

Example

Suppose G is the group defined by the following Cayley table.

*	1	2	3	4	5	6	7	8
1	1	2	3	4	5	6	7	8
2	2	1	8	7	6	5	4	3
3	3	4	5	6	7	8	1	2
4	4	3	2	1	8	7	6	5
5	5	6	7	8	1	2	3	4
6	6	5	4	3	2	1	8	7
7	7	8	1	2	3	4	5	6
8	8	7	6	5	4	3	2	1

Find Z(G)
 Find C(2), C(5)

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへで

Examples

Are $U(10) = \{1, 3, 7, 9\}$ and/or $U(12) = \{1, 5, 7, 11\}$ cyclic groups?

U	/(10):				U(1	2):		
$\cdot \mod 10$	1	3	7	9	• mod 12	1	5	7	11
1	1	3	7	9	1	1	5	7	11
3	3	9	1	7	5	5	1	11	7
7	7	1	9	3	7	7	11	1	5
9	9	7	3	1	11	11	7	5	1

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Comparing Cayley Tables

U(10)	=<	3 >:]				\mathbb{Z}_4	:				
• mod	10	3 ⁰	3 ¹	3 ²	3 ³		+	mod 4	0	1	2	3
3 ⁰		3 ⁰	3 ¹	3 ²	3 ³			0	0	1	2	3
3 ¹		3 ¹	3 ²	3 ³	3 ⁰			1	1	2	3	0
3 ²		3 ²	3 ³	3 ⁰	3^{1}			2	2	3	0	1
3 ³		3 ³	3 ⁰	3^1	3 ²			3	3	0	1	2
< Roo									1			
$ \begin{array}{c} \circ \\ \hline R_{0} \\ R_{90} \\ R_{180} \\ R_{270} \\ \end{array} $	>: R_0 (R_9) (R_9) (R_9)	$(0)^{0}(0)^{1}(0)^{2}(0)^{3}$	R_{90} (R_{90} (R_{90} (R_{90}	$(0)^{1}$ $(0)^{2}$ $(0)^{3}$ $(0)^{0}$	$\begin{array}{c} R_{180} \\ (R_{90})^2 \\ (R_{90})^3 \\ (R_{90})^0 \\ (R_{90})^1 \end{array}$	$\begin{array}{c} R_{270} \\ (R_{90})^3 \\ (R_{90})^0 \\ (R_{90})^1 \\ (R_{90})^2 \end{array}$	< e a^2 a^3	a >, wh	here a^{1} a^{2} a^{3} a^{0}	$a^{4} = \frac{a^{2}}{a^{2}}$ a^{3} a^{0} a^{1}	$\begin{bmatrix} = 0 \\ a^{3} \\ a^{3} \\ a^{0} \\ a^{1} \\ a^{2} \end{bmatrix}$	_

Math 321-Abstracti (Sklensky)

In-Class Work

September 24, 2010 4 / 13

We already know one group of order 4: the cyclic group

$$< e, a, a^2, a^3 >$$
, with $|a| = 4$.

• All cyclic groups of order 4 have this same format.

Math 321-Abstracti (Sklensky)

In-Class Work

September 24, 2010 5 / 13

Goal: Find all non-cyclic groups of order 4.

1. Suppose G is a non-cyclic group of order 4 containing an element a of order 4. What are the four elements of G?

Math 321-Abstracti (Sklensky)

In-Class Work

September 24, 2010 6 / 13

Goal: Find all non-cyclic groups of order 4.

Non-cyclic groups of order 4 do not contain any elements of order 4.
 Let a ∈ G such that a ≠ e. What can you say about |a|?

Math 321-Abstracti (Sklensky)

In-Class Work

September 24, 2010 6 / 13

Goal: Find all non-cyclic groups of order 4.

- 1. Non-cyclic groups of order 4 do not contain any elements of order 4.
- **2.** The non-identity elements of *G* must have order 2 or 3.

3. Suppose $a \in G$ such that |a| = 3. If we can construct such a group, we'll have a new group of order 4. If we can't, we'll know such a group is impossible. **Question:** If $a \in G$, what else must be in G?

3. Let G be a non-cyclic group of order 4, and let $a \in G$, such that |a| = 3.

Since G is closed, a^2, a^3, a^4, \ldots , and a^{-1}, a^{-2}, \ldots must all be in G. Since |a| = 3, the only new and distinct element this gives us is a^2 .

Thus so far we know that $G = \{e, a, a^2, ?\}$.

Question: What can you say about the last element? (Think about order!)

3. Let G be a non-cyclic group of order 4, and let $a \in G$, such that |a| = 3.

Since G is closed, a^2 , a^3 , a^4 , ..., and a^{-1} , a^{-2} , ... must all be in G. Since |a| = 3, the only new and distinct element this gives us is a^2 .

Thus so far we know that $G = \{e, a, a^2, ?\}$.

The last element, b, can not have order 1 (because then it would be e), 3 (because then not only would b be in G, but so would b^2 , and neither b nor b^2 could equal the three already known elements), or 4 or higher (because that introduces too many elements into the group).

Thus the only possibility is for |b| = 2.

Question: Can $\{e, a, a^2, b\}$, with $a^3 = e = b^2$ be a group of order 4? (Construct a Cayley table!)

Math 321-Abstracti (Sklensky)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

3. If G is a non-cyclic group of order 4 containing an element a of order 3, then G must have the form $G = \{e, a, a^2, b\}$, with $a^3 = e = b^2$.

There's nothing left to go in those spots without introducing new elements, but the group must be closed.

Conclusion: There is no non-cyclic group of order 4 that contains any elements of order 3.

Math 321-Abstracti (Sklensky)

In-Class Work

September 24, 2010 8 / 13

3. Another approach:

If G is a non-cyclic group of order 4 containing an element a of order 3, then G must have the form $G = \{e, a, a^2, b\}$, with $a^3 = e = b^2$.

Since the group is closed, ab must be in G, and so it must be one of the four already listed elements.

That is

$$ab = e$$
 $ab = a$ $ab = a^2$ $ab = b$.

But
$$ab \neq e$$
 since $a \cdot a^2 = e$, and inverses are unique
 $ab \neq a$ because $b \neq e$
 $ab \neq a^2$ because $b \neq a$
 $ab \neq b$ because $a \neq e$.

Conclusion: $ab \neq G$, and so there is no non-cyclic group of order 4 that contains any elements of order 3.

Math 321-Abstracti (Sklensky)

Goal: Find all non-cyclic groups of order 4.

- 1. Non-cyclic groups of order 4 do not contain any elements of order 4.
- **2.** The non-identity elements of *G* must have order 2 or 3.
- 3. Order 3 is impossible

4. If any non-cyclic groups of order 4 exist, the three non-identity elements must all have order 2.

Question: We know such a group exists (U(12) and D_2 are examples). But how many fundamentally different ways are there to construct such a table?

Math 321-Abstracti (Sklensky)

In-Class Work

September 24, 2010 10 / 13

4. Question: How many fundamentally different groups are there with $G = \{e, a, b, c\}$, with $a^2 = b^2 = c^2 = e$?

Question: What can you say about *ab* and *ba*?

Math 321-Abstracti (Sklensky)

In-Class Work

September 24, 2010 11 / 13

4. Question: How many fundamentally different groups are there with $G = \{e, a, b, c\}$, with $a^2 = b^2 = c^2 = e$?

ab can't be e, a, or b, so it must be c. Same with ba.

Question: What can you say about ac and ca?

Math 321-Abstracti (Sklensky)

In-Class Work

September 24, 2010 11 / 13

4. Question: How many fundamentally different groups are there with $G = \{e, a, b, c\}$, with $a^2 = b^2 = c^2 = e$?

*	e	а	b	С
е	е	а	b	С
а	а	е	С	b
b	b	с	е	?
С	с	b	?	е

ab can't be e, a, or b, so it must be c. Same with ba.

ac and ca must be b, for the same reasons.

Question: What can you say about *bc* and *cb*?

Math 321-Abstracti (Sklensky)

In-Class Work

September 24, 2010 11 / 13

4. Question: How many fundamentally different groups are there with $G = \{e, a, b, c\}$, with $a^2 = b^2 = c^2 = e$?

*	е	а	b	С
е	е	а	b	С
а	а	е	С	b
b	b	С	е	а
с	с	b	а	е

ab can't be e, a, or b, so it must be c. Same with ba.

ac and ca must be b, for the same reasons.

bc and cb must be a

Math 321-Abstracti (Sklensky)

In-Class Work

September 24, 2010 11 / 13

Goal: Find all non-cyclic groups of order 4.

Conclusion: There is only type of non-cyclic group of order 4.

*	е	а	b	С
е	е	а	b	С
а	а	е	с	b
b	b	С	е	а
с	с	b	а	е

What do you notice about this group?

Math 321-Abstracti (Sklensky)

In-Class Work

September 24, 2010 12 / 13

Big conclusion: There are only 2 fundamentally different types of groups of order 4: the cyclic group and the group with every non-identity element having order 2. Both of these are Abelian.