Example

Let |a| = 12 and let $G = \langle a \rangle = \{e, a, a^2, a^3, \dots, a^{11}\}$. Find all subgroups of G, and make a subgroup lattice.

Example

Let |a| = 12 and let $G = \langle a \rangle = \{e, a, a^2, a^3, \dots, a^{11}\}$. Find all subgroups of G, and make a subgroup lattice.

1. Every subgroup of a cyclic group is cyclic

Math 321-Abstracti (Sklensky)

In-Class Work

September 29, 2010 2 / 12

1. Every subgroup of a cyclic group is cyclic \Rightarrow Every subgroup of $\langle a \rangle$ has the form $\langle a^k \rangle$ for some k = 0, ... 11. (We already know that $\langle a^k \rangle$ is a subgroup for each k.)

There are **no** other subgroups of G!

The question is – are all 12 of these subgroups distinct, or do we have repetition? And if we have repetition \dots how *many* subgroups are there?)

- 1. Every subgroup of a cyclic group is cyclic \Rightarrow Every subgroup of $\langle a \rangle$ has the form $\langle a^k \rangle$ for some k = 0, ... 11.
- If | < a > | = n, then the order of every subgroup of <a> divides n.

- 1. Every subgroup of a cyclic group is cyclic \Rightarrow Every subgroup of < a > is generated by a single element of < a >. That is, every subgroup of < a > has the form $< a^k >$ for some k = 0, ... 11.
- If | < a > | = n, then the order of every subgroup of < a > divides n ⇒ The order of every subgroup of < a > divides 12, so the only *possible* subgroup orders are 1, 2, 3, 4, 6 and 12.

- 1. Every subgroup of a cyclic group is cyclic \Rightarrow Every subgroup of < a > is generated by a single element of < a >. That is, every subgroup of < a > has the form $< a^k >$ for some k = 0, ... 11.
- If | < a > | = n, then the order of every subgroup of <a> divides n ⇒ The order of every subgroup of < a> divides 12, so the only *possible* subgroup orders are 1,2,3,4,6 and 12.
- 3. For each divisor k of *n*, there is exactly one subgroup of order k, namely $< a^{n/k} >$.

- 1. Every subgroup of a cyclic group is cyclic \Rightarrow Every subgroup of $\langle a \rangle$ is generated by a single element of $\langle a \rangle$. That is, every subgroup of $\langle a \rangle$ has the form $\langle a^k \rangle$ for some k = 0, ... 11.
- If | < a > | = n, then the order of every subgroup of <a> divides n ⇒ The order of every subgroup of < a> divides 12, so the only *possible* subgroup orders are 1, 2, 3, 4, 6 and 12.
- 3. For each divisor k of *n*, there is exactly one subgroup of order *k*, namely $\langle a^{n/k} \rangle \Rightarrow$ there is one subgroup each of orders 1, 2, 3, 4, 6, and 12, and they are given by $\langle a^{12/k} \rangle$ for k = 1, 2, 3, 4, 6, 12.

Thus the only subgroups of $G = \langle a \rangle$, where $ G = 12$, are:	
Order of	Subgroup
subgroup	
1	$ < a^{12/1} > = < e > = \{e\}$
2	$ < a^{12/2}> = < a^6> = \{e,a^6\}$
3	$ < a^{12/3}> = < a^4> = \{e, a^4, a^8\}$
4	$< a^{12/4} > = < a^3 > = \{e, a^3, a^6, a^9\}$
6	$ ==\{e,a^2,a^4,a^6,a^8,a^{10}\}$
12	$ < a^{12/12} > = < a > = G = \{e, a, a^2, a^3, \dots, a^{11}\}$

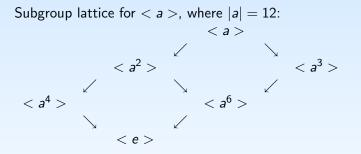
Thus the only subgroups of $C \to \infty$, where |C| = 12 area

Math 321-Abstracti (Sklensky)

In-Class Work

September 29, 2010 8 / 12

◆□>
◆□>
● = ◆□>
● = ◆□



Math 321-Abstracti (Sklensky)

In-Class Work

H b September 29, 2010 9 / 12

3

Image: A matrix

Summary of Results: Let G be a group and $a \in G$.

- ▶ Theorem 4.1: If $|a| = \infty$, then $a^i = a^j \iff i = j$. If $|a| = n < \infty$, then $\langle a \rangle = \{e, a, a^2, \dots, a^{n-1}\}$, and $a^i = a^j \iff n|(i-j)$, that is, $i = j \mod n$.
- Corollary 1: |a| = | < a > |.
- Corollary 2 : If |a| = n and if $a^k = e$, then *n* divides *k*.
- ▶ Theorem 4.2 : If |a| = n and $k \in \mathbb{Z}^+$, then $\langle a^k \rangle = \langle a^{gcd(n,k)} \rangle$, and $|a^k| = \frac{n}{gcd(n,k)}$.
- Corollary 1: In a finite cyclic group, the order of an element divides the order of the group.
- Corollary 2 : Let |a| = n. Then < aⁱ >=< a^j > if and only if gcd(n, i) =gcd(n, j) and |aⁱ| = |a^j| if and only if gcd(n, i) =gcd(n, j).
- Corollary 3 : Let |a| = n. Then < a >=< a^j > if and only if gcd(n,j) = 1 and |a| = |a^j| if and only if gcd(n,j) = 1.
- ► Corollary 4: An integer k in Z_n is a generator of Z_n if and only if gcd(n, k) = 1.

Math 321-Abstracti (Sklensky)

List all the elements of order 12 in $\mathbb{Z}_{12000000}.$ How do you know your list is complete?

In-Class Work

September 29, 2010 11 / 12

Solutions:

List all the elements of order 12 in $\mathbb{Z}_{12000000}.$ How do you know your list is complete?

 $\mathbb{Z}_{12000000} = <1> \text{ and } 12|12000000 \Longrightarrow (\mathsf{FToCG}, \mathsf{Part 3}) \exists \mathsf{a} ! \mathsf{ cyclic} \mathsf{ subgroup of order 12},$

$$<$$
 "1^{12000000/12}" >= \langle "1¹⁰⁰⁰⁰⁰⁰" $\rangle = \langle$ 1000000 \rangle .

All elements of order 12 must be in this subgroup, so the generators of < 1000000 > will be the only elements of order 12.

Corollary 3 to Theorem 4.2 $\implies |a^j| = |a| = n \iff \gcd(j, n) = 1$. In this case, that means

Thus 1000000, 5000000, 7000000, and 11000000 are the elements of order 12.

Math 321-Abstracti (Sklensky)