
Recall:

You found that there are 8 motions on the square that leave the square
seemingly unmoved:

{R0, R90, R180, R270, H, V , D, D ′}.

We called these motions the symmetries of the square.
Notation:

H ◦ R90 ⇐⇒ first rotating counter-clockwise by 90◦

then reflecting across a horizontal axis.
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The 8 motions on the square

{R0, R90, R180, R270, H, D, V , D ′}

and the operation ◦ of combining the motions form a system called the
dihedral group of order 8, denoted D4.

Why is it called D4?

1. D ⇐⇒ dihedral (two faces): that means the square has not only
rotations but also reflections.

2. 4 ⇐⇒ the number of rotations. The reason you only need the 4 is
that if an object has any reflections (which would mean we’re using
the letter ”D”), it has the same number of reflections as it does
rotations.

The set of symmetries of an equilateral triangle (3 rotations, 3 reflections)
is called D3, and in general, the set of symmetries of a regular n-gon (n
rotations, n reflections) is called Dn.
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Consider the following figure:

How can we move this and leave it (seemingly) unchanged?
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What sort of symmetries does this figure have?
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What about this figure?

This figure has no reflection symmetry.

It does have 8 rotations: R45, R90, etc. We say this figure has symmetry
group < R45 >.
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Below is the Cayley table showing the result of applying the operation to
any 2 elements.

◦ R0 R90 R180 R270 H D V D ′

R0 R0 R90 R180 R270 H D V D ′

R90 R90 R180 R270 R0 D ′ H D V

R180 R180 R270 R0 R90 V D ′ H D

R270 R270 R0 R90 R180 D V D ′ H

H H D∗ V D ′ R0 R90 R180 R270

D D V D ′ H R270 R0 R90 R180

V V D ′ H D R180 R270 R0 R90

D ′ D ′ H D V R90 R180 R270 R0

∗ Remember that the D in row H and column R90 comes from H ◦ R90.
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Properties of D4 to focus on:

1. Closure: No new motions are introduced. If A, B ∈ D4, then
A ◦ B ∈ D4.

2. Identity: R0 acts as an identity motion — R0 ◦ A = A ◦ R0 = A for all
A ∈ D4.

3. Inverses: Every element has an inverse motion that “undoes” what
the motion does. For example, R90 ◦ R270 = R270 ◦ R90 = R0.

4. Associativity: (A ◦ B) ◦ C = A ◦ (B ◦ C ) for all A, B, C ∈ D4.
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A few examples of sets, together with operations, which are closed,
associative, have an identity, and have all necessary inverses are:

• Integers (Z) under +

• Rational numbers (Q) under addition

• Q under multiplication is not a group, as 0 has no inverse –even
though every other element does.

• The set of all invertible 2x2 matrices with real entries, under matrix
multiplication.

Math 321-Abstracti (Sklensky) In-Class Work September 3, 2010 8 / 11



Well Ordering Principle:

Every non-empty set of positive integers contains a smallest member.

Notice that this is not true for R or Q, or even
if we allow negative integers.

Examples:

1. {x ∈ Z+|x ≤ 200} has a smallest element, by the well-ordering
principle.

2. {x ∈ Q+|x ≤ 200} doesn’t have a smallest element. For any rational
number between 0 and 200, you can always find another, smaller, one,
by taking half of the one you have. It will of course still be rational.
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Division Algorithm:

Let a, b ∈ Z where b > 0. Then there exist unique integers q, r such that

a = qb + r with 0 ≤ r < b.

i.e. Let a, b ∈ Z, where b > 0. Then ∃ ! q, r ∈ Z 3

a = qb + r with 0 ≤ r < b.

Examples:

If a = 13 and b = 5, then a = 2b + 3.

Remember, there’s nothing in the statement of the division algorithm
requiring that you choose a to be the larger of the two integers.

If a = 5 and b = 13, then a = 0 · 13 + 5.
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Theorem: (GCD is a Linear Combination)

For any non-zero a, b ∈ Z, there exist s and t such that
gcd(a, b) = as + bt. That is, the gcd(a, b) is a linear combination of a and
b. Moreover, gcd(a, b) is the smallest positive integer of the form as + bt.

Outline of Proof:

1. Let S = {am + bn |m, n ∈ Z and am + bn > 0}. Show S 6= ∅.

NTS gcd(a, b) ∈ S .

2. Well-Ordering Principle =⇒ S has a smallest element.
Let d = smallest elt of S . Since d ∈ S , ∃ M, N ∈ Z 3 d = aM + bN.

3. Show d |a, d |b, so d is a common divisor of a and b.

4. Show d = gcd(a, b), that is, d is the largest of all the common
divisors.
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