Part I:

For the first 3 problems, you will be investigating the use of perspective in 3 paintings by Renaissance masters. You will need print-outs of each of these paintings; because you may need several of each, I have put links to the paintings with the study guide rather than include the pictures in this file.

1. Consider Leonardo's The Last Supper (1495-1498), $460 \mathrm{~cm} \times 880 \mathrm{~cm}$.
(a) Finding the primary vanishing point
i. Highlight two lines parallel to the picture plane and parallel to each other.
ii. In a different color, highlight three lines orthogonal to the picture plane. (Remember, in real-life, these would be perpendicular to lines you found in part (i) and be receding).
iii. Find the primary vanishing point by extending the lines you found in part (ii) until they intersect (you may need to tape extra paper to the painting)

- This may take several tries, as it can be difficult to line your straight-edge up exactly with an orthogonal. Repeat on as many copies as necessary until you feel like your lines really line up with the painting.
iv. Is the primary vanishing point in the picture or off the picture? Is it used to draw the eye anywhere important, or is it just used to give an illusion of depth?
(b) Finding the ideal viewing position of your print-out
i. Draw the horizon line through the primary vanishing point. Be careful - this should be truly horizontal.
ii. Locate a secondary vanishing point by finding a square lying parallel to the floor, drawing its diagonal, and extending that diagonal until it intersects the horizon line.
iii. Determine the intended viewing distance for your print-out by measuring the distance between the primary and secondary vanishing point.
iv. Determine the ideal viewing position for your copy, and describe it. (Your description should include both the point on the picture opposite which the viewer should put their eye and the distance back from that point the viewer's eye should be.)
v. Try viewing it from the correct viewing position. Does it improve the illusion of depth in the picture? (Of course, with a print-out it's not the same experience as looking at it in person.)

(c) Estimating the ideal viewing position for the painting itself

i. Measure the height and width of your print-out.
ii. Use the measurements, along with the dimensions of the original painting, the viewing distance you found in (b), and your knowledge of proportion to get a pretty good estimate of the ideal viewing position of the actual painting.
2. Next, consider Rafael's School of Athens (1509-1511), $500 \mathrm{~cm} \times 770 \mathrm{~cm}$.
(a) Find the primary vanishing point, by following the steps above. Is the primary vanishing point in the picture or off the picture? Is it used to draw the eye anywhere important, or is it just used to give an illusion of depth?
(b) Find the ideal viewing position of your print-out. Again, try viewing your printout from that position - does it improve the illusion of depth?
(c) As above, estimate of the ideal viewing position of the actual painting.
3. Finally, consider Masaccio's Trinity (1427-1428), $667 \mathrm{~cm} \times 317 \mathrm{~cm}$, the painting that motivated our looking into finding the correct viewing position.
(a) Find the primary vanishing point. Is it used to draw the eye anywhere important?
(b) Find the ideal viewing position of your print-out; does viewing your print-out from that position improve the illusion of depth?
Note: Finding a square to work with takes a bit more work in this painting. Look at the top of the columns - there is an unfinished square. Finish off the square using the primary vanishing point to draw in the missing orthogonal, and then draw in the missing back.
(c) Use your results and the dimensions of the painting to estimate the ideal viewing position of the actual painting.

Part II:

The next exercises extend the technique for finding the ideal viewing position to allow us to deal with situations where we don't have a square but instead have specific rectangles.

4. Drawing your own cube:

In the figure below, we see the start of a one-point perspective drawing of a cube. The front face is a square, V is the vanishing point, and the dashed lines are guidelines for
drawing receding edges of the cube. Finish drawing the cube so that the viewing distance is 6 inches.

Hint: Look at Figure 7 from Lesson 3; work backwards, in a sense.

5. If the box below represents a cube, then we can use the techniques from Part I to find the correct viewing distance; it would end up being the distance between the two trees, as illustrated.

Suppose the box below is not a cube - while its front is still square, its top face is in reality twice as deep as it is wide from left to right. In this case, the viewing distance is not equal to the distance between the two trees. What is the viewing distance? (You may give your answer in terms of the distance between the trees, if that's easier.)

Hint: Go through the same process we went through in class to find the viewing distance with a cube, but make appropriate adjustments.

