Please do this homework on separate paper, not on this handout.

For each of the following seeds s,

- (a) Find the first 7 terms of the Mandelbrot sequence with seed s (including 0).
 - (Recall: The Mandelbrot sequence is just the list of results (real or complex numbers) you get when you've started with a seed. The first element in the sequence is 0, the second will always be the seed.
- (b) On graph paper, plot six points in the orbit of s (that is, ignoring that first 0 term, convert the numbers in the Mandelbrot sequence for that seed to points, and plot them).
 - Unless you fill the whole page with your graph, and use different colors for each orbit, you should have each orbit in a separate graph.
- (c) Is this Mandelbrot sequence *escaping*, *periodic*, or *attracted*? (If 6 terms is not enough for you to be able to judge, find more.)
- (d) Is the seed in the Mandelbrot set?
- (e) Should we color the seed black or not-black?

1.
$$s = (-1, 0)$$

2.
$$s = (-2, 0)$$

3.
$$s = (-.25, 0)$$

4.
$$s = (0, -1)$$

5.
$$s = (0, 0.5)$$

6.
$$s = (1, 1)$$

Sklensky Spring, 2017