Recall:

- The definite integral $\int_{a}^{b} f(x) dx$ gives the signed area from x = a to x = b between f(x) and the x-axis.
- We define the area function for a function f(x), based at x = a, to be
 A_f(x) = ∫_a^x f(t) dt, that is, the signed area from t = a to t = x
 between f(t) and the t-axis.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ ● ○ ○ ○ ○

Recall:

- The definite integral $\int_{a}^{b} f(x) dx$ gives the signed area from x = a to x = b between f(x) and the x-axis.
- We define the area function for a function f(x), based at x = a, to be
 A_f(x) = ∫_a^x f(t) dt, that is, the signed area from t = a to t = x
 between f(t) and the t-axis.
- For several functions, all with basepoint of 0, we have found the corresponding area functions.

Math 101-Calculus 1 (Sklensky)

In-Class Work

In Class Work from Thursday

2. Let
$$f(x) = 2x + 4$$
.

(a) Use what we already know combined with high school geometry to find a formula for $A_{f,0}(x) = \int_{0}^{x} f(t) dt$. $\int_{0}^{x} 2t + 4 \, dt = 2 \int_{0}^{x} t + 2 \, dt = 2 \left(\frac{1}{2} x^{2} + 2x \right) = x^{2} + 4x$ Use (a), facts we've established in class about definite integrals, and (b) more high school geometry, to find $A_{f,-2}(x) = \int_{-\infty}^{x} f(t) dt$ (c) Use (a) or (b), facts we've established in class about definite integrals, and more high school to find $A_{f,1}(x) = \int_{-\infty}^{x} f(t) dt$

Math 101-Calculus 1 (Sklensky)

November 19, 2010 2 / 6

In Class Work

 Suppose f(x) is positive on some interval [A, B] containing the base point a. What can you say about A_f(x), the area function based at t = a, for all x in [A, B]? What if f is negative?

Suppose f(x) is increasing on some interval [A, B] containing the base point a. What can you say about A_f(x), the area function based at t = a, for all x in [A, B]? What if f is decreasing?

In Class Work

1. Suppose f(x) is positive on some interval [A, B] containing the base point *a*. What can you say about $A_f(x)$, the area function based at t = a, for all x in [A, B]? What if f is negative?

Hint: Is $A_f(x)$ increasing or decreasing for all $x \in [A, B]$?

Suppose f(x) is increasing on some interval [A, B] containing the base point a. What can you say about A_f(x), the area function based at t = a, for all x in [A, B]? What if f is decreasing?

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへで

In Class Work

1. Suppose f(x) is positive on some interval [A, B] containing the base point *a*. What can you say about $A_f(x)$, the area function based at t = a, for all x in [A, B]? What if f is negative?

Hint: Is $A_f(x)$ increasing or decreasing for all $x \in [A, B]$?

Suppose f(x) is increasing on some interval [A, B] containing the base point a. What can you say about A_f(x), the area function based at t = a, for all x in [A, B]? What if f is decreasing?

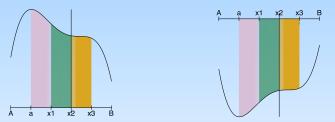
Hint: Is $A_f(x)$ concave up or concave down for all $x \in [A, B]$?

Math 101-Calculus 1 (Sklensky)

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへで

Solutions

1. Suppose $f(x) \ge 0$ on [A, B] containing a. What can you say about $A_f(x)$ based at t = a, for all x in [A, B]? What if f is negative?



 $A_f(x_1) < A_f(x_2) < A_f(x_3).$ $A_f(x_3) < A_f(x_2) < A_f(x_1) < 0.$

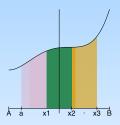
 $f > 0 \Rightarrow$ as x moves from left to right, $A_f(x) = \int_{a}^{x}$ includes to right, $A_f(x) = \int_{a}^{x}$ includes more and more positive area, and so $A_f(x)$ is increasing.

 $f < 0 \Rightarrow$ as x moves from left more and more negative area, and so $A_f(x)$ is decreasing.

Math 101-Calculus 1 (Sklensky)

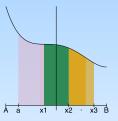
Solutions

1. Suppose $f(x) \uparrow$ on [A, B] containing *a*. What can you say about $A_f(x)$ based at t = a, for all x in [A, B]? What if f is \downarrow ?



From x_1 to x_2 , more area is added than from *a* to x_1 . Similarly, from x_2 to x_3 , more area is added than from x_1 to x_2 . Thus (in this case) $A_f(x)$ is increasing (since f > 0) at an increasing rate (since *f* is increasing). In other words,

 $A_f(x)$ is concave up. Math 101-Calculus 1 (Sklensky)



From x_1 to x_2 , less area is added than from *a* to x_1 . Similarly, from x_2 to x_3 , less area is added than from x_1 to x_2 . Thus (in this case) $A_f(x)$ is increasing (since f > 0) at a decreasing rate (since *f* is decreasing). In other words,

A_f(x) is concave down. ▲ In-Class Work Novembe

November 19, 2010 5 / 6

Summary - Results for $A_f(x)$

$$A_f(x) \stackrel{def}{=} \int_a^x f(t) dt$$

а	f(x)	$A_f(x)$
0	1	X
0	2	2 <i>x</i>
0	x	$\frac{1}{2}x^2$
0	<i>x</i> + 2	$\frac{1}{2}x^2 + 2x$
0	2x + 4	$x^{2} + 4x$
-2	2x + 4	$x^2 + 4x + 4$
1	2x + 4	$x^2 + 4x - 5$

Question: Does the relationship between $A_f(x)$ and f(x) remind you of the relationship between f(x) and any other function? relation = relation =

Math 101-Calculus 1 (Sklensky)

In-Class Work

November 19, 2010 6 / 6