• **Theorem:** Suppose that F(x) is an antiderivative of f(x) and G(x) is an antiderivative of g(x). Then, for any constants a and b, one antiderivative of af(x) + bg(x) is aF(x) + bG(x).

In order to see that aF(x) + bG(x) is an antiderivative of af(x) + bg(x), we need to check that

$$\frac{d}{dx}(aF(x) + bG(x)) = af(x) + bg(x).$$

Since F'(x) = f(x) and G'(x) = g(x), then by combining Theorem 2.3.1 (i) and (iii), we see that:

$$\frac{d}{dx}(aF(x)+bG(x)) = a\frac{d}{dx}(F(x))+b\frac{d}{dx}(G(x)) = af(x)+bg(x).$$

• Theorem: For $x \neq 0$, $\frac{d}{dx} (\ln |x|) = \frac{1}{x}$.

Recall that

$$|x| = \begin{cases} x & \text{if } x > 0\\ -x & \text{if } x < 0. \end{cases}$$

If x > 0, then $\ln |x| = \ln(x)$, and so

$$\frac{d}{dx}(\ln|x|) = \frac{d}{dx}(\ln(x)) = \frac{1}{x},$$

while if x < 0, then $\ln |x| = \ln(-x)$, and so

$$\frac{d}{dx}\left(\ln|x|\right) = \frac{d}{dx}\left(\ln(-x)\right) = (-1)\frac{1}{-x} = \frac{1}{x}.$$

Thus in either case, $\frac{d}{dx}(\ln|x|) = \frac{1}{x}$.

• Table of antiderivatives:

In each case, F(x) represents an antiderivative of f(x):

f(x)	F(x)	f(x)	F(x)
$x^r, r \neq 1$	$\frac{x^{r+1}}{r+1}$	$\sec(x)\tan(x)$	$\sec(x)$
$\sin(x)$	$\cos(x)$	$\csc(x)\cot(x)$	$-\csc(x)$
$\cos(x)$	$-\sin(x)$	e^x	e^x
$\sec^2(x)$	$\tan(x)$	$x^{-1} = \frac{1}{x}, x \neq 0$	$\ln x $
$\csc^2(x)$	$\cot(x)$		

• **Theorem:** Suppose that F and G are both antiderivatives of a function f on an interval I. Then

$$G(x) = F(x) + c,$$

for some constant c.

This is really just a restatement of Corollary 2.9.1, which states that if g'(x) = f'(x) for all x in some open interval I, then for some constant c, g(x) = f(x) + c for all $x \in I$.

To see this, we have only to recall that since F and G are both antiderivatives of f on the interval I, it follows that on the interval I, G'(x) = f(x) = F'(x).

Thus by Corollary 2.9.1, there is some constant c such that G(x) = F(x) + c.