1. For each function, find its derivative.

(a)
$$f(x) = e^x - 7x^2 - 3\sec(x) + \ln(2)$$

$$f'(x) = e^x - 14x - 3\sec(x)\tan(x) + 0$$

(ln(2) is a constant, just like 5 is, and so $\frac{d}{dx}(\ln(2)) = 0$.)

(b)
$$g(x) = \cos^2(x) + x^e - \ln(x) + 3^x$$

$$f'(x) = -2\cos(x)\sin(x) + ex^{e-1} - \frac{1}{x} + \ln(3)3^{x}$$

(x^e is not an exponential function, as it isn't in the form constant variable power

Instead, it's in the form variable constant power, and so it's a power function. Thus we just used the power rule on it.)

1. For each function, find its derivative.

(c)
$$h(x) = \sin(7)e^x - 3x^{\ln(12)} + 5e^8 - (\ln(3))^x$$

$$f'(x) = \sin(7)e^x - 3\ln(12)x^{\ln(12)-1} - \ln(\ln(3))\ln(3)^x$$
 (sin(7) is a constant, so differentiate $\sin(7)e^x$ the same way you would differentiate $2e^x$ – use that $\frac{d}{dx}(kf(x)) = kf'(x)$. Similarly, $\ln(12)$ is constant, and so to differentiate $x^{\ln(12)}$ use the power rule. $5e^8$ is also just a constant, so it's derivative is 0. While it looks intimidating, $(\ln(3))^x$ is just a routine exponential function, its base is *just* $\ln(3)$.)

(d)
$$j(x) = 4e^{2x} - 3\cos(x^2 + 1) - \frac{1}{x}$$

$$j'(x) = 4e^{2x} \cdot 2 + 3\sin(x^2 + 1) \cdot (2x) - (-1)x^{-2}.$$

(e^{2x} is a composition, with 2x "inside" e^x , so use the chain rule. We also use the chain rule on $3\cos(x^2+1)$, with the inner function being $x^2 + 1$.

1. For each function, find its derivative.

(e)
$$k(x) = 3\log_4(x) + 2\sin(e^x) - \ln(x^2 + 1) + \tan^2(x)$$

$$k'(x) = 3\left(\frac{1}{\ln(4)}\right)\left(\frac{1}{x}\right) + 2\cos(e^x)(e^x) - \frac{1}{x^2 + 1}(2x) + 2\tan(x)(\sec^2(x)).$$

(f)
$$I(x) = \log_2\left(e^x + 2\right)$$

$$I'(x) = \frac{1}{\ln(2)} \frac{1}{e^x + 2} (e^x).$$

1. For each function, find its derivative.

(g)
$$m(x) = 4^x \tan(x)$$

$$m'(x) = 4^{x} (\sec^{2}(x)) + (\ln(4)4^{x}) \tan(x).$$

(h)
$$n(x) = \frac{\sec(x) + x^2}{\ln(x)}$$

$$n'(x) = \frac{\ln(x)\left(\sec(x)\tan(x) + 2x\right) - \left(\sec(x) + x^2\right)\left(\frac{1}{x}\right)}{\left(\ln(x)\right)^2}$$

(i)
$$p(x) = (3x^2 - 7)\sin(5x + 3)$$

$$p'(x) = (3x^2 - 7)(\cos(5x + 3)(5)) + (6x)\sin(5x + 3).$$

1. For each function, find its derivative.

(j)
$$r(x) = \frac{\sec(x^2)}{e^x}$$

$$r'(x) = \frac{(e^x)(\sec(x^2)\tan(x^2)(2x)) - \sec(x^2)(e^x)}{(e^x)^2}$$

(k)
$$s(x) = x^5 e^x \sin(x^3)$$

 $s'(x) = x^5 e^x (3x^2 \cos(x^3)) + x^5 (e^x) \sin(x^3) + (5x^4) e^x \sin(x^3)$

(I)
$$t(x) = \sqrt{x^2 \cos(x)}$$

 $t'(x) = \frac{1}{2} (x^2 \cos(x))^{-1/2} \left(x^2 (-\sin(x)) + (2x) \cos(x) \right)$

- 2. Find the second derivative of each of the following:
 - (a) The original function from 1(b), $g(x) = \cos^2(x) + x^e \ln(x) + 3^x$

$$f'(x) = -2\cos(x)\sin(x) + ex^{e-1} - \frac{1}{x} + \ln(3)3^{x}$$

$$f''(x) = \left(-2\cos(x)\cos(x) + 2\sin(x)\sin(x)\right) + e(e-1)x^{e-2} + x^{-2} + \ln(3)\left(\ln(3)3^{x}\right)$$

$$= 2\left(\sin^{2}(x) - \cos^{2}(x)\right) + e(e-1)x^{e-2} + \frac{1}{x^{2}} + \left(\ln(3)\right)^{2}3^{x}$$

(b) The original function from 1(d), $j(x) = 4e^{2x} - 3\cos(x^2 + 1) - \frac{1}{x}$

$$j'(x) = 4e^{2x} \cdot 2 + 3\sin(x^2 + 1) \cdot (2x) - (-1)x^{-2}$$

$$= 8e^{2x} + 6x\sin(x^2 + 1) + x^{-2}$$

$$j''(x) = 16e^{2x} + (6x\cos(x^2 + 1)(2x) \pm 6\sin(x^2 + 1)) = 2x = 3$$

3. Find an antiderivative of each of the following; check your answers by differentiating your result.

(a)
$$f(x) = e^x - \frac{1}{x} + \sin(x)$$

$$F(x) = e^x - \ln(x) - \cos(x).$$

Check:
$$\frac{d}{dx}\left(e^x - \ln(x) - \cos(x)\right) = e^x - \frac{1}{x} - \left(-\sin(x)\right)$$

(b)
$$g(x) = e^{x+2} - \frac{1}{x+3} + \sin(x+4)$$

$$G(x) = e^{x+2} - \ln(x+3) - \cos(x+4).$$

Check:

$$\frac{d}{dx}\left(e^{x+2} - \ln(x+3) - \cos(x+4)\right) = e^{x+2}(1) - \frac{1}{x+3}(1) + \sin(x+4)(1)$$

Math 101-Calculus 1 (Sklensky)

In-Class Work

October 15, 2010 7 / 8

3. Find an antiderivative of each of the following; check your answers by differentiating your result.

(c)
$$h(x) = e^{2x} - \frac{1}{3x} + \sin(4x)$$

$$H(x) = \frac{1}{2}e^{2x} - \frac{1}{3}\ln(3x) - \frac{1}{4}\cos(4x)$$

Check:

$$\frac{d}{dx} \left(\frac{1}{2} e^{2x} - \frac{1}{3} \ln(3x) - \frac{1}{4} \cos(4x) \right) = \frac{1}{2} (2) e^{2x} - \frac{1}{3} (3) \frac{1}{3x} + \frac{1}{4} (4) \sin(4x)$$

3. Suppose you know that h(x) = f(g(x)), and you have also observed that f(1) = 3, g(1) = 2, f'(1) = 4, f'(2) = 3, g'(1) = -2, and g'(3) = 5. Find h'(1).

$$h'(x) = \frac{d}{dx} \left(f(g(x)) \right)$$
$$= f'(g(x))g'(x)$$
$$\Rightarrow h'(1) = f'(g(1))g'(1).$$

Since
$$g(1) = 2$$
, $g'(1) = -2$,

$$\Rightarrow h'(1) = f'(2) \cdot (-2).$$

And since f'(2) = 3,

$$\Rightarrow h'(1) = (3)(-2) = -6$$

9 / 8

4. Find the derivative of $f(\sqrt{x})$, as far as you can for an unspecified function f.

$$\frac{d}{dx}\bigg(f\big(\sqrt{x}\big)\bigg) = f'\big(\sqrt{x}\big) \cdot \frac{1}{2}x^{-1/2}.$$

10 / 8

5. Find an antiderivative F(x) of f(x):

(a)
$$f(x) = (x^2 + 3)^2(2x)$$

- ▶ What could I have differentiated to produce the product $(x^2 + 3)^2(2x)$?
- Some sort of product or composition.
- Differentiating a product usually produces a sum; I don't have a sum.
- Differentiating a composition usually produces a product of 2 pieces, one of which is usually still a composition. Do I have a composition?
- Yes $(x^2 + 3)^2$
- ▶ So I'm going to guess that $(x^2 + 3)^2(2x)$ comes from differentiating a composition using the chain rule.

- 5. Find an antiderivative F(x) of f(x):
 - (a) $f(x) = (x^2 + 3)^2(2x)$ (continued)

What F(x) = h(g(x)) might I have started with to end up with

$$h'(g(x))g'(x) = (x^2 + 3)^2(2x)$$
?

- ▶ **Notice:** If $g(x) = x^2 + 3$, then g'(x) = 2x, so that seems reasonable.
- Let $u = x^2 + 3$. Then what I'm left with is $h'(u) = u^2$. In that case, what is h(u)?

$$h(u) = \frac{1}{2}u^3.$$

- ► Thus I think $F(x) = h(g(x)) = h(x^2 + 3) = \frac{1}{2}(x^2 + 3)^3$.
- ▶ Check: Is F(x) an antiderivative of f(x)? That is, is F'(x) = f(x)?

$$\frac{d}{dx} \left(\frac{1}{3} (x^2 + 3)^3 \right) = \frac{1}{3} (3)(x^2 + 3)^2 (2x) = (x_1^2 + 3)(2x) = f(x), \text{ as desired of } 12 / 8$$

$$\lim_{x \to \infty} 1 \text{ (Sklensky)}$$

5. Find an antiderivative F(x) of f(x):

(b)
$$f(x) = (x^2 + 3x)(2x) + (2x + 3)(x^2)$$

What could I have differentiated to produce the product

$$(x^2+3x)(2x)+(2x+3)(x^2)$$
?

- Some sort of product or composition.
- Differentiating a product usually produces a sum; I have a sum.
- Differentiating a composition usually produces a product of 2 pieces, one of which is usually still a composition. I don't have a composition.
- So I'm going to guess that $(x^2 + 3x)(2x) + (2x + 3)(x^2)$ comes from differentiating a product using the product rule.

5. Find an antiderivative F(x) of f(x):

(b)
$$f(x) = (x^2 + 3x)(2x) + (2x + 3)(x^2)$$

What
$$F(x) = g(x)h(x)$$
 might I have started with to end up with $g(x)h'(x) + g'(x)h(x) = (x^2 + 3x)(2x) + (2x + 3)(x^2)$?

- ▶ If I let $g(x) = x^2 + 3x$, then g'(x) = 2x + 3 which shows up in the other half of the expression.
- ▶ If I let $h(x) = x^2$, then h'(x) = 2x, which shows up in the first half of the expression.
- ► Thus I think $F(x) = g(x)h(x) = (x^2 + 3x)(x^2)$
- ▶ Check: Is F(x) an antiderivative of f(x)? That is, is F'(x) = f(x)?

- 6. Over what intervals is $f(x) = (x^2 4)^2(x^2 + 10)^2$ increasing? Where is it decreasing? Use your answers to determine where f has local maxima and local minima.
 - ▶ f(x) is increasing whenever it's rate of change is positive, that is, wherever f'(x) > 0. It is decreasing wherever f'(x) < 0.
 - ▶ f is a product of $(x^2 4)^2$ and $(x^2 + 10)^2$, so in order to find f', use the product rule:

$$f'(x) = (x^2 - 4)^2 \left((x^2 + 10)^2 \right)' + \left((x^2 - 4)^2 \right)' (x^2 + 10).$$

► Each of the pieces that still need to be differentiated are compositions, and so next use the chain rule:

$$f'(x) = (x^2 - 4)^2 \left[2(x^2 + 10)(2x) \right] + \left[2(x^2 - 4)(2x) \right] (x^2 + 10)^2$$

$$= 4x(x^2 - 4)^2 (x^2 + 10) + 4x(x^2 - 4)(x^2 + 10)^2$$

$$= 4x(x^2 - 4)(x^2 + 10) \left[(x^2 - 4) + (x^2 + 10) \right]$$

Math 101-Calculus 1 (Sklensky) $4x(x^2-4)(x_{\text{in-Class}}^2 10)(2x^2+3)$ October 15, 2010 15 / 8

- 6. (continued) Over what intervals is $f(x) = (x^2 4)^2(x^2 + 10)^2$ increasing? Where is it decreasing? Use your answers to determine where f has local maxima and local minima.
 - ▶ To find where f' is positive and negative,
 - first find where it's 0.

$$f'(x) = 0 \iff 4x(x^2 - 4)(x^2 + 10)(2x^2 + 3) = 0$$

 $\iff 4x = 0 \text{ or } x^2 - 4 = 0 \text{ or } x^2 + 10 = 0 \text{ or } 2x^2 + 3 = 0$
 $\iff x = 0 \text{ or } x = \pm 2$

- ▶ These are the only places f'(x) = 0, and thus the only places f'(x) could possibly go from being positive to negative or from negative to positive.
- ▶ Thus if f'(x) < 0 (or > 0) at one point to the left of x = -2, it is negative (or positive) for *all* points to the left of x = -2.

$$x = -3$$
 is to the left of $x = -2$.

$$f'(-3) = \left(4\cdot -3\right)\left(\left(-3\right)^2 - 4\right)\left(\left(-3\right)^2 + 10\right)\left(2\cdot \left(-3\right)^2 + 3\right) = (-)(+)(+)(+) < 0.$$

Since f'(-3) < 0, f' < 0 for all x < -2 and so f is decreasing on

- 6. (continued) Over what intervals is $f(x) = (x^2 4)^2(x^2 + 10)^2$ increasing? Where is it decreasing? Use your answers to determine where f has local maxima and local minima.
 - ▶ To find where f' is positive and negative,
 - ▶ Just found f is decreasing on the interval $(-\infty, -2)$.
 - Since f'(x) = 0 at x = -2 and at x = 0 but at no points in between, f'(x) must have the same sign for all x in the interval (-2,0).

Pick one point in that interval: x = -1 is in the interval (-2, 0).

$$f'(-1) = (4 \cdot (-1))((-1)^2 - 4)((-1)^2 + 10)(2(-1)^2 + 3) = (-)(-)(+)(+) > 0.$$

Since f'(-1) > 0, f > 0 for all x in (-2,0) and so f is increasing on (-2,0).

- 6. (continued) Over what intervals is $f(x) = (x^2 4)^2(x^2 + 10)^2$ increasing? Where is it decreasing? Use your answers to determine where f has local maxima and local minima.
 - ▶ To find where f' is positive and negative,
 - f is decreasing on the interval $(-\infty, -2)$.
 - f is increasing on the interval (-2,0)
 - ▶ To find out whether f' is positive or negative on (0,2), find the sign of f' at one point in that interval: try x=1.

$$f'(1) = (4 \cdot 1)(1^2 - 4)(1^2 + 10)(2(1)^2 + 3) = (+)(-)(+)(+) < 0.$$

Thus f' < 0 on the interval (0,2) and so f is decreasing on (0,2).

And to find out whether f' is positive or negative for all x > 2, find the sign of f' at one point to the right of x = 2, such as x = 3.

$$f'(3) = (4 \cdot 3)(3^2 - 4)(3^2 + 10)(2 \cdot 3^2 + 3) = (+)(+)(+)(+) > 0,$$

so
$$f'>0$$
 on $(2,\infty)$ and hence f is increasing on $(2,\infty)$.

- 6. (continued) Over what intervals is $f(x) = (x^2 4)^2(x^2 + 10)^2$ increasing? Where is it decreasing? Use your answers to determine where f has local maxima and local minima.
 - ▶ To find where f' is positive and negative,
 - f is decreasing on the interval $(-\infty, -2)$.
 - f is increasing on the interval (-2,0)
 - f is decreasing on the interval (0,2)
 - f is increasing on the interval $(2, \infty)$
 - ▶ Thus f has a local minimum at x = -2, and another one x = 2. It has a local maximum at x = 0.

7. Find a function which is flat at x = -1, x = 0, x = 2.

Hint: Construct your function's derivative first.

f(x) will be flat at x = -1, x = 0, and x = 2 if:

$$f'(-1) = 0$$
 $f'(0) = 0$ $f'(2) = 0$.

One example of such a derivative is

$$f'(x) = (x+1)(x)(x-2).$$

This multiplies out to

$$f'(x) = x(x^2 - x - 2) = x^3 - x^2 - 2x.$$

Antidifferentiating this will produce a function that is flat at x = -1, x = 0, and x = 2:

$$f(x) = \frac{1}{4}x^4 - \frac{1}{3}x^3 - x^2$$
 is one such function

8. Suppose that F(x) is an antiderivative of $f(x) = x \sin(e^x)$. Find F'(x).

Saying that F(x) is an antiderivative of f(x) is equivalent to saying that F(x) is a function we differentiate to get f(x), or in other words, F'(x) = f(x).

Thus $F'(x) = x \sin(e^x)$.

9. Suppose that F'(x) = G'(x) for all x. Is it possible that F(x) = G(x) + x?

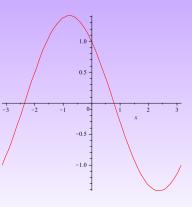
Let's see if this is possible!

Math 101-Calculus 1 (Sklensky)

Suppose
$$F(x)$$
 is $G(x) + x$. Then
$$F'(x) = \frac{d}{dx} (G(x) + x) = G'(x) + 1 \neq G'(x).$$

So no, it is not possible that F(x) = G(x) + x.

10. Suppose that F is an antiderivative of the function f shown below. Suppose also that F(0) = 10.

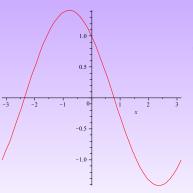


(a) What is the slope of F at x = 4?

Slope of
$$F$$
 at $x = 4$ = $F'(4)$
= $f(4) \approx 5.6$.

- (b) Where in the interval [0, 10] is F increasing?
 F ↑ where F' > 0, i.e. where f > 0, so on the entire interval [0, 10]
- (c) Where in the interval [0, 10] does F have inflection points? F has inflection points where F' has local maxima or local minima, so at $x \approx 1.5$ and $x \approx 8.5$.

10. Suppose that F is an antiderivative of the function f shown below. Suppose also that F(0) = 10.



(d) Is it possible that F(5) = 5? We know that F(0) = 10, and we know that F is increasing from x = 0 to x = 10, so F(5) must be larger than F(0).

Hence F(5) > 10, and so F(5) can not possibly be 5.

23 / 8