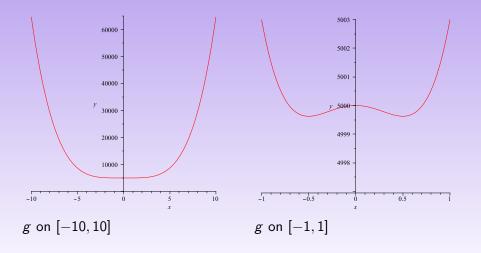
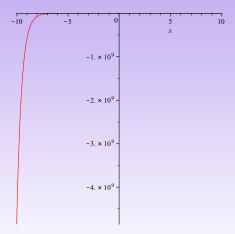
Windows matter!



1 / 14

Example: Find all local extrema of $y = xe^{-2x}$.

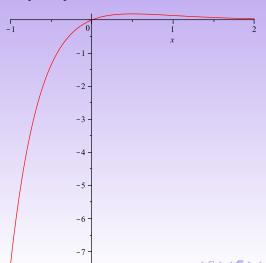
First, look at the graph using the standard graphing calculator interval of [-10, 10]:



Looks like it might be always increasing, becoming asymptotic to y=0.

Example: Find all local extrema of $y = xe^{-2x}$.

Now that we know it has a local max at x=1/2, we know roughly where to zoom in- try $x\in [-1,2]$



3 / 14

In Class Work

- Find (by hand) the intervals where the function is increasing and decreasing. Use this information (and a few key points) to sketch a graph. If you have access to graphing technology, then verify your results.
 - (a) $y = x^3 3x + 2$
 - (b) $y = (x+1)^{2/3}$
 - (c) $y = \sin^2(x)$
- 2. Find (by hand) all critical numbers and use the First Derivative Test to classify each as the location of a local maximum, local minimum, or neither.
 - (a) $y = x^4 + 4x^3 2$
 - (b) $y = \sqrt{x^3 + 3x^2}$
 - (c) $y = (x^2 + x + 0.45)e^{-2x}$

1. (a)
$$y = x^3 - 3x + 2$$

Locate Critical Numbers

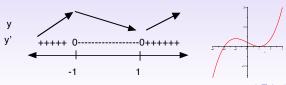
$$y' = 3x^2 - 3 \Rightarrow y' = 3(x^2 - 1) = 3(x - 1)(x + 1).$$

- ▶ y' exists everywhere
- y' = 0 at x = -1, x = 1.

Thus x = -1 and x = 1 are the only two critical numbers.

► Find where *f* is increasing, decreasing:

$$f'(-2) = 3(-)(-) > 0$$
 $f'(0) = 3(-)(+) < 0$ $f'(2) = 3(+)(+) > 0$



- 1. (b) $y = (x+1)^{2/3}$
 - ► Locate Critical Numbers:

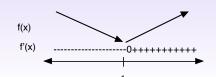
$$y' = \frac{2}{3}(x+1)^{-1/3} = \frac{2}{3(x+1)^{1/3}}.$$

- y' does not exist at x = -1 (but y does)
- $y' \neq 0$

Thus x = -1 is the only critical number.

► Find where *f* is increasing and decreasing:

$$f'(-2) = \frac{2}{(+)(-)} < 0$$
 $f'(0) = \frac{2}{(+)(+)} > 0$



- 1. (c) $y = \sin^2(x)$
 - **▶** Locate Critical Numbers:

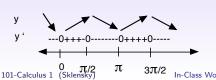
$$y' = 2\sin(x)\cos(x).$$

- y' exists everywhere.
- y' = 0 whenever either cos(x) = 0 or sin(x) = 0, so at $x = 0, \pi/2, \pi, 3\pi/2$ and also at all of these $\pm 2k\pi$.
- ► Find where *f* is increasing and decreasing:

$$f'(-\pi/4) = 2(-)(+) < 0, f'(\pi/4) = 2(+)(+) > 0,$$

$$f'(3\pi/4) = 2(+)(-) < 0, f'(5\pi/4) = 2(-)(-) > 0,$$

$$f'(7\pi/4) = 2(-)(+) < 0$$



October 25, 2010

2. (a)
$$y = x^4 + 4x^3 - 2$$

Locate Critical Numbers:

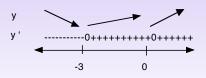
$$y' = 4x^3 + 12x^2 = 4x^2(x+3).$$

- y' exists everywhere.
- y' = 0 whenever either x = 0 or x = -3

Thus only two critical points are x=0 and x=-3

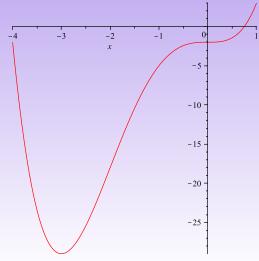
▶ Find where *f* is increasing and decreasing:

$$f'(-4) = 4(+)(-) < 0$$
 $f'(-2) = 2(+)(+) > 0$ $f'(1) = 2(+)(+) > 0$



▶ Conclude: y has a local min at x = -3; x = 0 is neither a local min nor a local max.

2. (a) **Verify:**



October 25, 2010

2. (b)
$$y = \sqrt{x^3 + 3x^2}$$

▶ Locate Critical Numbers:

$$y' = \frac{1}{2}(x^3 + 3x^2)^{-1/2}(3x^2 + 6x) = \frac{3x^2 + 6x}{2\sqrt{x^3 + 3x^2}} = \frac{3x(x+2)}{2\sqrt{x^2(x+3)}}.$$

y' does not exist if: $x^2(x+3) < 0$ or if $x^2(x+3) = 0$... but if $x^2(x+3) < 0$, y does not exist either, so the only critical number from here are those where $x^2(x+3) = 0$, or x = 0 or x = -3.

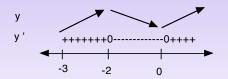
Note:
$$x^2(x+3) < 0$$
 if $x+3 < 0$, or if $x < -3$, so y only exists for $x > -3$.

▶ y' = 0 when the numerator is 0, so x = -2. (Not at x = 0, since that's not in the domain.)

Thus our critical numbers are x = -3, x = -2 and x = 0.

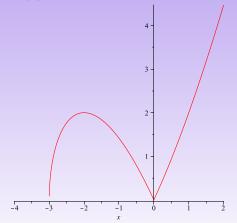
- 2. (b) $y = \sqrt{x^3 + 3x^2}$
 - ▶ Critical Numbers: x = -3, x = -2 and x = 0.
 - ► Find where f is increasing and decreasing: Remember: y does not exist to the left of x = -3

$$f'(-5/2) = \frac{(-)(-)}{+} > 0, \ f'(-1) = \frac{(-)(+)}{+} < 0, \ f'(1) = \frac{(+)(+)}{+} > 0$$



- ► Conclude:
 - y has a local minimum at x = -3 and another at x = 0, and a local maximum at x = -2

2. (b) **Verify:**



2. (c)
$$y = (x^2 + x + 0.45)e^{-2x}$$

► Locate Critical Numbers:

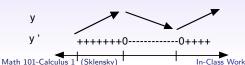
$$y' = -2(x^2 + x + 0.45)e^{-2x} + (2x + 1)e^{-2x}$$
$$= e^{-2x}(-2x^2 - 2x - 0.9 + 2x + 1)$$
$$= e^{-2x}(-2x^2 + 0.1) = \frac{-2(x^2 - 0.05)}{e^{2x}}.$$

- y' exists everywhere
- y' = 0 when $x = \pm \sqrt{0.05}$

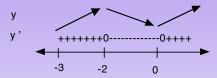
Critical numbers: $x = -\sqrt{0.05} \approx -0.224$ and $x = \sqrt{0.05} \approx 0.224$.

► Find where *f* is increasing and decreasing:

$$f'(-1) = \frac{-2(+)}{+} < 0$$
 $f'(0) = \frac{-2(-)}{+} > 0$ $f'(1) = \frac{-2(+)}{+} < 0$



► Find where *f* is increasing and decreasing:



► Conclude:

y has a local minimum at $x=-\sqrt{0.05}$ and a local maximum at

$$x = \sqrt{0.05}$$

▶ Verify:

