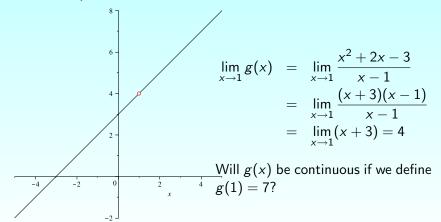
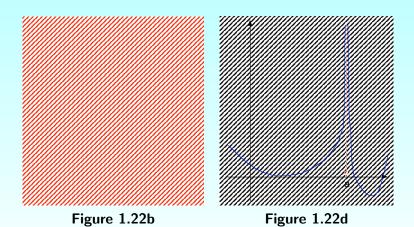
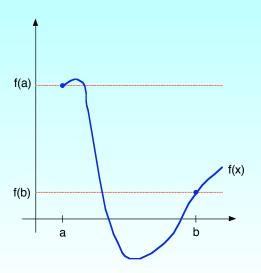
Define Continuous:

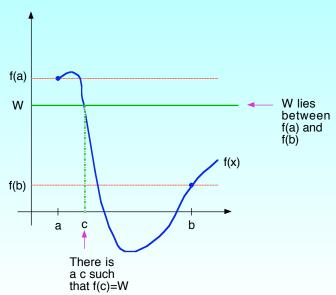

Definition: A function f is **continuous at x = a** when

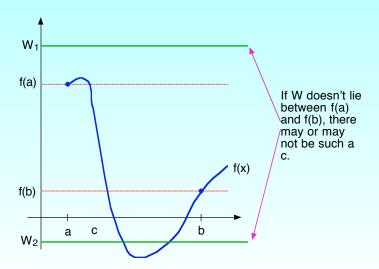
$$(i)f(a)$$
 is defined $(ii)\lim_{x\to a}f(x)$ exists and $(iii)\lim_{x\to a}f(x)=f(a)$.


Otherwise, f is said to be **discontinuous at** x = a.

Reading Question # 3 (Example 1.4.2)


Let
$$g(x) = \begin{cases} \frac{x^2 + 2x - 3}{x - 1} & \text{if } x \neq 1, \\ a & \text{if } x = 1 \end{cases}$$
 for some real number a .


Reading Question # 4


Illustrating the IVT:

Illustrating the IVT:

Illustrating the IVT:

Find a zero of $f(x) = \cos(x) - x$:

	Interval $[a,b]$	f(a)	f(b)	mid point	f(midpoint)	Which $\frac{1}{2}$ -interval?
	[0, 1]	> 0	< 0	0.5	0.378 > 0	[0.5, 1]
Ì						

Find a zero of $f(x) = \cos(x) - x$:

Interval	f(a)	f(b)	mid	f(midpoint)	Which $\frac{1}{2}$ -
[a, b]			point		interval?
[0, 1]	> 0	< 0	0.5	0.378 > 0	[0.5, 1]
[0.5, 1]	> 0	< 0	0.75	-0.018 < 0	

Find a zero of $f(x) = \cos(x) - x$:

Interval	f(a)	f(b)	mid	f(midpoint)	Which $\frac{1}{2}$ -
[a, b]			point		interval?
[0, 1]	> 0	< 0	0.5	0.378 > 0	[0.5, 1]
[0.5, 1]	> 0	< 0	0.75	-0.018 < 0	[0.5, 0.75]

Find a zero of $f(x) = \cos(x) - x$:

Interval	f(a)	<i>f</i> (<i>b</i>)	mid	f(midpoint)	Which $\frac{1}{2}$ -
[a, b]			point		interval?
[0, 1]	> 0	< 0	0.5	0.378 > 0	[0.5, 1]
[0.5, 1]	> 0	< 0	0.75	-0.018 < 0	[0.5, 0.75]
[0.5, 0.75]	> 0	< 0	0.625	0.186 > 0	

Find a zero of $f(x) = \cos(x) - x$:

Interval [a, b]	f(a)	f(b)	mid point	f(midpoint)	Which $\frac{1}{2}$ -interval?
[0, 1]	> 0	< 0	0.5	0.378 > 0	[0.5, 1]
[0, 1]			0.0	0.010 > 0	[0.0, 1]
[0.5, 1]	> 0	< 0	0.75	-0.018 < 0	[0.5, 0.75]
[0.5, 0.75]	> 0	< 0	0.625	0.186 > 0	[0.625, 0.75]

Find a zero of $f(x) = \cos(x) - x$:

Interval	f(a)	f(b)	mid	f(midpoint)	Which $\frac{1}{2}$ -
[a, b]			point		interval?
[0, 1]	> 0	< 0	0.5	0.378 > 0	[0.5, 1]
[0.5, 1]	> 0	< 0	0.75	-0.018 < 0	[0.5, 0.75]
[0.5, 0.75]	> 0	< 0	0.625	0.186 > 0	[0.625, 0.75]
[0.625, 0.75]	> 0	< 0	0.6875	0.085 > 0	
	•	•	•		

Find a zero of $f(x) = \cos(x) - x$:

Interval	f(a)	f(b)	mid	f(midpoint)	Which $\frac{1}{2}$ -
[a, b]			point		interval?
[0, 1]	> 0	< 0	0.5	0.378 > 0	[0.5, 1]
[0.5, 1]	> 0	< 0	0.75	-0.018 < 0	[0.5, 0.75]
[0.5, 0.75]	> 0	< 0	0.625	0.186 > 0	[0.625, 0.75]
[0.625, 0.75]	> 0	< 0	0.6875	0.085 > 0	[0.6875, 0.75]

Find a zero of $f(x) = \cos(x) - x$:

Interval	f(a)	<i>f</i> (<i>b</i>)	mid	f(midpoint)	Which $\frac{1}{2}$ -
[a, b]			point		interval?
[0, 1]	> 0	< 0	0.5	0.378 > 0	[0.5, 1]
[0.5, 1]	> 0	< 0	0.75	-0.018 < 0	[0.5, 0.75]
[0.5, 0.75]	> 0	< 0	0.625	0.186 > 0	[0.625, <mark>0.75</mark>]
[0.625, 0.75]	> 0	< 0	0.6875	0.085 > 0	[0.6875, <mark>0.75</mark>]
[0.6875, 0.75]	> 0	< 0	0.71875	0.034 > 0	[0.71875, 0.75]
[0.71875, 0.75]	> 0	< 0	0.734375	0.008 > 0	[0.734375, 0.75]

-0.005 > 0

[0.734375, 0.75]

0.7421875

[0.734375, 0.742

In Class Work

- 1. Let $f(x) = 14\sin(3x) + 2x^2 4x^3$. Use the IVT to show that f(x) has a root between x = -2 and x = 2.
- 2. (a) Let $f(x) = \frac{1}{x-2}$. Use the IVT to show that f(x) has a root between x = 1 and x = 3.
 - (b) Find the exact value of the root by solving f(x) = 0. What goes wrong?
 - (c) Reconcile your answers to parts (a) and (b).

Solutions:

1. Let $f(x) = 14\sin(3x) + 2x^2 - 4x^3$. Use the IVT to show that f(x) has a root between x = -2 and x = 2.

$$f(-2) = 14\sin(-6) + 8 - 4(-8) = 14\sin(-6) + 8 + 32 > 0$$

 $f(2) = 14\sin(6) + 8 - 32 < 0$

Because f is continuous on [-2,2] and because 0 is between f(-2) and f(2), there must be some $c \in [-2,2]$ such that f(c) = 0. Therefore f has a root between x = -2 and x = 2.

9 / 11

Solutions:

2. Let
$$f(x) = \frac{1}{x-2}$$
.

(a) Use the IVT to show that f(x) has a root between x = 1 and x = 3.

$$f(1) = -1$$
 $f(3) = 1$

Since f(1) < 0 and f(3) > 0, it seems that f has a root between x = 1 and x = 3.

(b) Find the exact value of the root by solving f(x) = 0. What goes wrong?

$$\frac{1}{x-2} = 0 \Longrightarrow (x-2)\left(\frac{1}{x-2}\right) = (x-2)(0) \Longrightarrow 1 = 0!!$$

Nonsensical conclusion \Longrightarrow Original set-up must have made no sense

2. (continued)

(c) Reconcile your answers to parts (a) and (b).

How can there not be a root – we used the IVT to show a root must exist!!

But did we? Did we ever check to see whether the hypotheses of the theorem apply?

Is f(x) continuous on [1,3]?

No –
$$f(x) = \frac{1}{x-2}$$
 is not defined at $x = 2$.