Definition:

An exponential function has the form

 $f(x) = b^x$

where *b* is a *fixed* **positive** number, called the **base**.

Math 101-Calculus 1 (Sklensky)

In-Class Work

September 3, 2010 1 / 10

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Definition:

An exponential function has the form

$$f(x) = b^x$$

where *b* is a *fixed* **positive** number, called the **base**.

Examples: Let
$$g(x) = e^x$$
, $h(x) = 3^x$, and $k(x) = 4^x$.

Remember: e is an irrational number that shows up all the time; like π it shows up enough that we give it's own name.

 $e \approx 2.71828...,$

Math 101-Calculus 1 (Sklensky)

In-Class Work

September 3, 2010 1 / 10

1. Is π^x an exponential function?

Math 101-Calculus 1 (Sklensky)

In-Class Work

September 3, 2010 2 / 10

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - 釣�?

1. Is π^x an exponential function?

Yes: π is a fixed positive number, so is perfectly valid base, and the exponent is a variable.

Math 101-Calculus 1 (Sklensky)

In-Class Work

September 3, 2010 2 / 10

1. Is π^{x} an exponential function?

Yes: π is a fixed positive number, so is perfectly valid base, and the exponent is a variable.

2. How about x^2 ?

1. Is π^{x} an exponential function?

Yes: π is a fixed positive number, so is perfectly valid base, and the exponent is a variable.

2. How about x^2 ?

No: in this case, the base is a variable and the exponent is fixed. This is not an exponential function, it's a *power function*.

E SQA

(日) (四) (日) (日) (日)

1. Is π^{x} an exponential function?

Yes: π is a fixed positive number, so is perfectly valid base, and the exponent is a variable.

2. How about x^2 ?

No: in this case, the base is a variable and the exponent is fixed. This is not an exponential function, it's a *power function*.

These are two fundamentally different types of functions.

(日) (四) (日) (日) (日)

Graphs of e^x , 3^x , and 4^x

• $f(x) = b^x$ always passes through the points (1, b) and (0, 1):

$$f(1) = b^1 = b$$
, so $(1, b)$ is on the graph
 $f(0) = b^0 = 1$, so $(0, 1)$ is on the graph

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

In-Class Work

Math 101-Calculus 1 (Sklensky)

• $f(x) = b^x$ always passes through the points (1, b) and (0, 1):

$$f(1) = b^1 = b$$
, so $(1, b)$ is on the graph
 $f(0) = b^0 = 1$, so $(0, 1)$ is on the graph

•
$$f(x) = b^x > 0$$
, since $b > 0$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

• $f(x) = b^x$ always passes through the points (1, b) and (0, 1):

$$f(1) = b^1 = b$$
, so $(1, b)$ is on the graph
 $f(0) = b^0 = 1$, so $(0, 1)$ is on the graph

•
$$f(x) = b^x > 0$$
, since $b > 0$

- ▶ Domain=(-∞,∞) and Range=(0,∞) Remember:
 - ▶ the *domain* is the set of inputs what *x* does it make sense to plug in;
 - the range is the set of outputs what values of f(x) will you get out, if you plug in all possible values of x?

Math 101-Calculus 1 (Sklensky)

In-Class Work

September 3, 2010 4 / 10

Definition:

A logarithm function with base b is denoted

$$f(x) = \log_b(x)$$

and is defined by $y = \log_b(x)$ iff $b^y = x$.

Math 101-Calculus 1 (Sklensky)

In-Class Work

September 3, 2010 5 / 10

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 - のへ⊙

Inverse Functions

Two functions are inverses of each other if

- For all x ∈ the domain of g, f(g(x)) = x and
- For all $x \in$ the domain of f, g(f(x)) = x

Inverse Functions

Two functions are inverses of each other if

- For all x ∈ the domain of g, f(g(x)) = x and
- For all $x \in$ the domain of f, g(f(x)) = x

Notation:

If f and g are inverses of each other, we write $g(x) = f^{-1}(x)$.

▲ロト ▲圖ト ▲ヨト ▲ヨト 三ヨ - のへで

Inverse Functions

Two functions are inverses of each other if

- For all x ∈ the domain of g, f(g(x)) = x and
- For all $x \in$ the domain of f, g(f(x)) = x

Notation:

If f and g are inverses of each other, we write $g(x) = f^{-1}(x)$.

Examples of Inverse Functions

▶
$$f(x) = x^2$$
 for $x \ge 0$; $f^{-1}(x) = \sqrt{x}$
▶ $f(x) = 2x + 5$, $f^{-1}(x) = \frac{x-5}{2}$

Math 101-Calculus 1 (Sklensky)

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三日 うらぐ

September 3, 2010

6 / 10

More on Inverse Functions:

- If a point (a, b) is on the graph of f(x), then that means that f(a) = b.
- In turn, that must mean that f⁻¹(b) = f⁻¹(f(a)) = a, so the point (b, a) is on the graph of f⁻¹(x).
- ► This ends up meaning that the graph of f⁻¹ is the same as the graph of f reflected across the line y = x.

Graphs of ln(x), $log_3(x)$, and $log_4(x)$, along with those of e^x , 3^x , and 4^x

• $f(x) = \log_b(x)$ always passes through the points (b, 1) and (1, 0):

$$\Box = \log_b(b) \Leftrightarrow b^{\Box} = b \Leftrightarrow \Box = 1$$

Thus $(b, 1)$ is on the graph
$$\Box = \log_b(1) \Leftrightarrow b^{\Box} = 1 \Leftrightarrow \Box = 0$$

Thus $(1, 0)$ is on the graph

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

In-Class Work

Math 101-Calculus 1 (Sklensky)

• $f(x) = \log_b(x)$ always passes through the points (b, 1) and (1, 0):

$$\Box = \log_b(b) \Leftrightarrow b^{\Box} = b \Leftrightarrow \Box = 1$$

Thus $(b, 1)$ is on the graph
$$\Box = \log_b(1) \Leftrightarrow b^{\Box} = 1 \Leftrightarrow \Box = 0$$

Thus $(1, 0)$ is on the graph

• Logarithms are not defined at x = 0:

 $\Box = \log_b(0) \Leftrightarrow b^\Box = 0$ Thus 0 is not in the domain of any logarithmic function

Math 101-Calculus 1 (Sklensky)

In-Class Work

September 3, 2010 9 / 10

Also notice:

Logarithms are not defined at negative numbers:

 $\Box = \log_b(\text{negative number} \Leftrightarrow b^{\Box} = \text{ negative number}$

Since *b* is positive, no matter what power you raise it to, b^{\Box} will always be positive.

Math 101-Calculus 1 (Sklensky)

In-Class Work

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三日 うらぐ

September 3, 2010 10 / 10