In Class Practice

1. Convert each expression into exponential form:

(a)
$$\frac{2}{x^3}$$
 (b) $\sqrt[4]{6x^3}$ (c) $-\frac{5}{2\sqrt[3]{x}}$

- 2. Find a function of the form $f(x) = ae^{bx}$ which goes through the points (0, 2) and (2, 6).
- 3. Find the compositions $f \circ g(x)$ and $g \circ f(x)$ if $f(x) = x^2 + x$ and $g(x) = \sin(x)$.
- 4. Identify functions f(x) and g(x) such that $\sqrt{(x-2)^4+3}$ is $f \circ g(x)$.
- 5. Use the graph below to sketch the graph of 3f(x) + 5

Solutions

1. Convert each expression into exponential form:

(a)
$$d\frac{2}{x^3} = 2x^{-3}$$

(b) $\sqrt[4]{6x^3} = 6^{1/4}x^{\frac{3}{4}}$
(c) $-\frac{5}{2\sqrt[3]{x}} = -\frac{5}{2}x^{-1/3}$

990

・ロト ・回ト ・ヨト ・ヨト

Solutions

2. Find a function of the form f(x) = ae^{bx} which goes through the points (0, 2) and (2, 6).
(0, 2) on the graph ⇒ f(0) = 2.

i.e. $2 = f(0) = ae^{b \cdot 0} = ae^0 = a$. Thus we know that $f(x) = 2e^{bx}$. We still need to find b. (2,6) on the graph $\implies f(2) = 6$.

i.e.
$$6 = f(2) = 2e^{2b}$$
.

We need to solve for b.

$$6 = 2e^{2b} \Longrightarrow 3 = e^{2b}$$

$$\ln(3) = 2b \text{ (because } \ln(x) \text{ and } e^x \text{ are inverses)}$$

$$\frac{\ln(3)}{2} = b \Longrightarrow f(x) = 2e^{\frac{x}{2}\ln(3)}$$

Math 101-Calculus 1 (Sklensky)

Solutions:

3. Find the compositions $f \circ g(x)$ and $g \circ f(x)$ if $f(x) = x^2 + x$ and $g(x) = \sin(x)$.

(a)
$$f \circ g(x) = f(g(x)) = f(\sin(x)) = \sin^2(x) + \sin(x)$$

(b) $g \circ f(x) = g(f(x)) = g(x^2 + x) = \sin(x^2 + x)$

- 4. Identify functions f(x) and g(x) such that $\sqrt{(x-2)^4+3}$ is $f \circ g(x)$.
 - One possibility: g(x) = x 2, $f(x) = \sqrt{x^4 + 3}$
 - Another possibility: $g(x) = (x-2)^4$, $f(x) = \sqrt{x+3}$
 - Yet another possibility: $g(x) = (x-2)^4 + 3$, $f(x) = \sqrt{x}$.

Math 101-Calculus 1 (Sklensky)

In-Class Work

September 9, 2010 4 / 7

Solutions:

5. Use the graph below to sketch the graph of 3f(x) + 5

Math 101-Calculus 1 (Sklensky)

In-Class Work

September 9, 2010 5 / 7

3

3.1

• • • • • • • •

Sac

Goal:

To estimate the rate the function $f(x) = e^x$ changes at the point x = 1.

Find the following average rates of change. Make a table keeping track of your results.

Find the average rate of change of e^{x}

- 1. from x = 1 to x = 2
- 2. from x = 1 to x = 1.1
- 3. from x = 1 to x = 1.01
- 4. from x = 0 to x = 1
- 5. from x = 0.9 to x = 1
- 6. from x = 0.99 to x = 1

Math 101-Calculus 1 (Sklensky)

Find the following average rates of change for $f(x) = e^x$. Make a table keeping track of your results.

x = 1	Average rate	x =?	Average rate
to <i>x</i> =?	of change	to $x = 1$	of change
2	$\frac{e^2 - e^1}{2 - 1} \approx 4.6708$	0	$\frac{e^1 - e^0}{1 - 0} \approx 1.7183$
1.1	$\frac{e^{1.1}-e^1}{1.1-1}\approx 2.8588$	0.9	$rac{e^1-e^{0.9}}{1-0.9}pprox 2.5868$
1.01	$\frac{e^{1.01}-e^1}{1.01-1}\approx 2.7319$	0.99	$\frac{e^1-e^{0.99}}{1-0.99}\approx 2.7047$
1.001	$\frac{e^{1.001}-e^1}{1.001-1}\approx 2.7196$	0.999	$\frac{e^1 - e^{0.999}}{1 - 0.999} \approx 2.7169$
1.0001	$\frac{e^{1.0001}-e^1}{1.0001-1}\approx 2.7184$	0.9999	$\frac{e^1 - e^{0.9999}}{1 - 0.9999} \approx 2.7181$

Math 101-Calculus 1 (Sklensky)

September 9, 2010 7 / 7

SAC