Integration by Substitution:

- If integrand= product and one factor =composition, then ask :

Could the integrand come from differentiating using the Chain Rule?
(Sometimes, it won't be obvious that you have a composition.)

- Choose u to be the inside function in the composition (if there is one).
- Use your choice of u to find $d u$
- Substitute in u and $d u$. Adjust by mult. constant if necessary.

Remember: $d u$ can not be in the denominator, raised to any power, or otherwise be inside any function.

- If this is not possible, or if after doing this there are still some remaining x terms, then your choice of u will not work; try another choice of u, or another method of integration.
- Antidifferentiate the resulting function of u.
- Substitute back in for x

In Class Work

Use substitution to find the following indefinite integrals, and check your results by differentiating.

1. $\int \cos (x) e^{\sin (x)} d x$
$(u=\sin (x))$
2. $\int x \sin \left(\pi x^{2}\right) d x \quad\left(u=\pi x^{2}\right)$
3. $\int_{-\pi / 4}^{\pi / 3} \cos (3 x) d x$
4. $\int \frac{1}{\sqrt{1-x}} d x$
$(u=1-x)$
5. $\int_{2}^{5} \frac{1}{x \ln (x)} d x$
$(u=\ln (x))$
6. $\int \frac{e^{\sqrt{x+1}}}{\sqrt{x+1}} d x$
$(u=\sqrt{x+1})$
7. $\int_{0}^{\pi / 4} \tan (x) d x$
$(u=\cos (x))$
8. $\int x^{2} \sec \left(x^{3}\right) \tan \left(x^{3}\right) d x$
9. $\int \frac{\sec ^{2}(x)}{\tan (x)} d x$
10. $\int_{0}^{\pi / 4} \sin (x) \cos (x) d x$
11. $\int e^{x} \cos \left(e^{x}\right) d x$
12. $\int_{1}^{5} x \sqrt{x-1} d x$

Solutions:

1. $\int \cos (x) e^{\sin (x)} d x \quad(u=\sin (x))$

- Integrand= product; one factor =composition. Came from chain rule?
- Choose u to be the inside function in the composition (if there is one). Composition: $e^{\sin (x)}$, Inside function: $u=\sin (x)$.
- Find du:

Since $u=\sin (x)$, then $\frac{d u}{d x}=\cos (x)$, so $d u=\cos (x) d x$.

- Substitute in u and $d u$, without changing integral

$$
\int \cos (x) e^{\sin (x)} d x=\int e^{u} d u
$$

- Antidifferentiate

$$
\int \cos (x) e^{\sin (x)} d x=\int e^{u} d u=e^{u}+C
$$

- Substitute back in for x

$$
\int \cos (x) e^{\sin (x)} d x=e^{\sin (x)}+C
$$

Solutions:

2. $\int x \sin \left(\pi x^{2}\right) d x \quad\left(u=\pi x^{2}\right)$

- Integrand= product; one factor =composition. Came from chain rule?
- Choose u to be the inside function in the composition (if there is one). Composition: $\sin \left(\pi x^{2}\right)$, Inside function: $u=\pi x^{2}$.
- Find du:

Since $u=\pi x^{2}$, then $\frac{d u}{d x}=2 \pi x$, so $d u=2 \pi d x$.

- Substitute in u and $d u$, without changing integral

$$
\int x \sin \left(\pi x^{2}\right) d x=\frac{1}{2 \pi} \int \sin \left(\pi x^{2}\right)(2 \pi x d x)=\frac{1}{2 \pi} \int \sin (u) d u
$$

- Antidifferentiate

$$
\int x \sin \left(\pi x^{2}\right) d x=\frac{1}{2 \pi} \int \sin (u) d u=\frac{1}{2 \pi}(-\cos (u))+C
$$

- Substitute back in for x

$$
\int x \sin \left(\pi x^{2}\right) d x=-\frac{1}{2 \pi} \cos \left(\pi x^{2}\right)+C
$$

Solutions:

3. $\int \frac{1}{\sqrt{1-x}} d x \quad(u=1-x)$

- Integrand= product; one factor =composition. Came from chain rule?
- Choose u to be the inside function in the composition (if there is one). Composition: $\sqrt{1-x}=(1-x)^{1 / 2}$, Inside function: $u=1-x$.
- Find du:

Since $u=1-x$, then $\frac{d u}{d x}=-1$, so $d u=-1 d x$.

- Substitute in u and $d u$, without changing integral

$$
\int \frac{1}{\sqrt{1-x}} d x=-1 \int(1-x)^{-1 / 2}(-1 d x)=-1 \int u^{-1 / 2} d u
$$

- Antidifferentiate

$$
\int \frac{1}{\sqrt{1-x}} d x=-1 \int u^{-1 / 2} d u=(-1)(2) u^{1 / 2}+C
$$

- Substitute back in for x

$$
\int \frac{1}{\sqrt{1-x}} d x=-2 \sqrt{1-x}+C
$$

In Class Work

Use substitution to find the following indefinite integrals, and check your results by differentiating.

1. $\int \cos (x) e^{\sin (x)} d x$
$(u=\sin (x))$
2. $\int x \sin \left(\pi x^{2}\right) d x \quad\left(u=\pi x^{2}\right)$
3. $\int_{-\pi / 4}^{\pi / 3} \cos (3 x) d x$
4. $\int \frac{1}{\sqrt{1-x}} d x$
$(u=1-x)$
5. $\int_{2}^{5} \frac{1}{x \ln (x)} d x$
$(u=\ln (x))$
6. $\int \frac{e^{\sqrt{x+1}}}{\sqrt{x+1}} d x$
$(u=\sqrt{x+1})$
7. $\int_{0}^{\pi / 4} \tan (x) d x$
$(u=\cos (x))$
8. $\int x^{2} \sec \left(x^{3}\right) \tan \left(x^{3}\right) d x$
9. $\int \frac{\sec ^{2}(x)}{\tan (x)} d x$
10. $\int_{0}^{\pi / 4} \sin (x) \cos (x) d x$
11. $\int e^{x} \cos \left(e^{x}\right) d x$
12. $\int_{1}^{5} x \sqrt{x-1} d x$

Solutions:

4. $\int_{2}^{5} \frac{1}{x \ln (x)} d x$

Let $u=\ln (x)$. Then $\frac{d u}{d x}=\frac{1}{x}$, so $d u=\frac{1}{x} d x$.

$$
\int_{2}^{5} \frac{1}{x \ln (x)} d x=\int_{2}^{5} \frac{1}{\ln (x)} \cdot \frac{1}{x} d x=\int_{x=2}^{x=5} \frac{1}{u} d u .
$$

No x 's or $d x$'s left, so a successful substitution!
When $x=2, u=\ln (2)$, and when $x=5, u=\ln (5)$, so

$$
\int_{2}^{5} \frac{1}{x \ln (x)} d x=\int_{\ln (2)}^{\ln (5)} \frac{1}{u} d u
$$

$$
\int_{\ln (2)}^{\ln (5)} \frac{1}{u} d u=\left.\ln |u|\right|_{\ln (2)} ^{\ln (5)}=\ln (\ln (5))-\ln (\ln (2))
$$

Solutions:

5. $\int \frac{e^{\sqrt{x+1}}}{\sqrt{x+1}} d x$

Let $u=\sqrt{x+1}$. Then $\frac{d u}{d x}=\frac{1}{2}(x+1)^{-1 / 2} \cdot 1=\frac{1}{2} \cdot \frac{1}{\sqrt{x+1}}$
$d u=\frac{1}{2} \frac{1}{\sqrt{x+1}} d x$.
Notice that:

$$
\int \frac{e^{\sqrt{x+1}}}{\sqrt{x+1}} d x=\int e^{\sqrt{x+1}} \cdot 2 \cdot \frac{1}{2} \frac{1}{\sqrt{x+1}} d x
$$

If we don't replace the $\sqrt{x+1}$ in the denominator with a u, but instead use it as part of $d u$, this substitution will work.

$$
\int \frac{e^{\sqrt{x+1}}}{\sqrt{x+1}} d x=\int e^{u} \cdot 2 d u
$$

No x 's left - a successful substitution.

Solutions:

5. $\int \frac{e^{\sqrt{x+1}}}{\sqrt{x+1}} d x$

With $u=\sqrt{x+1}$ and $d u=\frac{1}{2} \frac{1}{\sqrt{x+1}} d x$,

$$
\int \frac{e^{\sqrt{x+1}}}{\sqrt{x+1}} d x=\int e^{u} \cdot 2 d u
$$

$$
\int e^{u} \cdot 2 d u=2 \int e^{u} d u
$$

$$
=2 e^{u}+C
$$

$$
=2 e^{\sqrt{x+1}}+C
$$

Solutions:

6. $\int_{0}^{\pi / 4} \tan (x) d x=\int_{0}^{\pi / 4} \frac{\sin (x)}{\cos (x)} d x$

Let $u=\cos (x)$. Then $\frac{d u}{d x}=-\sin (x)$, so $d u=-\sin (x) d x$.
When $x=0, u=\cos (0)=1$. When $x=\pi / 4, u=\cos (\pi / 4)=\frac{\sqrt{2}}{2}$.

$$
\begin{aligned}
\int_{0}^{\pi / 4} \tan (x) d x & =\int_{0}^{\pi / 4} \frac{1}{\cos (x)}(-1)(-1) \sin (x) d x \\
& =\int_{1}^{\sqrt{2} / 2} \frac{1}{u} d u \\
& =-\left.\ln |u|\right|_{1} ^{\sqrt{2} / 2} \\
& =-\ln (\sqrt{2} / 2)+0
\end{aligned}
$$

Solutions:

7. $\int_{-\pi / 4}^{\pi / 3} \cos (3 x) d x$

Let $u=3 x$. Then $\frac{d u}{d x}=3$, so $d u=3 d x$
When $x=-\pi / 4, u=-3 \pi / 4$. When $x=\pi / 3, u=\pi$.

$$
\begin{aligned}
\int_{-\pi / 4}^{\pi / 3} \cos (3 x) d x & =\int_{-\pi / 4}^{\pi / 3} \cos (3 x) \cdot \frac{1}{3} \cdot 3 d x \\
& =\frac{1}{3} \int_{-3 \pi / 4}^{\pi} \cos (u) d u \\
& =\left.\frac{1}{3} \sin (u)\right|_{-3 \pi / 4} ^{\pi} \\
& =\frac{1}{3}[\sin (\pi)-\sin (-3 \pi / 4)]
\end{aligned}
$$

Solutions:

8. $\int x^{2} \sec \left(x^{3}\right) \tan \left(x^{3}\right) d x$

Let $u=x^{3}$. Then $\frac{d u}{d x}=3 x^{2}$, so $d u=3 x^{2} d x$.

$$
\begin{aligned}
\int x^{2} \sec \left(x^{3}\right) \tan \left(x^{3}\right) d x & =\int \sec \left(x^{3}\right) \tan \left(x^{3}\right) \cdot \frac{1}{3} \cdot 3 x^{2} d x \\
& =\int \sec (u) \tan (u) \cdot \frac{1}{3} d u \\
& =\frac{1}{3} \int \sec (u) \tan (u) d u \\
& =\frac{1}{3} \sec (u)+C \\
& =\frac{1}{3} \sec \left(x^{3}\right)+C
\end{aligned}
$$

Check by differentiating this antiderivative to see make sure we get the original integrand.

Solutions:

9. $\int \frac{\sec ^{2}(x)}{\tan (x)} d x$

Tricky: The obvious composition is $\sec ^{2}(x)=(\sec (x))^{2}$.
And yet division is also a composition: we have $(\tan (x))^{-1}$
So there's definitely composition going on, but what u should be isn't immediately obvious ... at least not when thinking about what the inside function is.

Instead, look to see if any piece looks like the derivative of any other piece. When we look at it that way, we see immediately that we have
a $\tan (x)$, and we have $\sec ^{2}(x)=\frac{d}{d x}(\tan (x))$.
That suggests that we might try letting $u=\tan (x)$. Of course, we don't know if it's going to work yet, but it's a place to start.

Solutions:

9. $\int \frac{\sec ^{2}(x)}{\tan (x)} d x$

Let $u=\tan (x)$. Then $\frac{d u}{d x}=\sec ^{2}(x)$, so $d u=\sec ^{2}(x) d x$.
Substituting in, we get

$$
\begin{aligned}
\int \frac{(\sec (x))^{2}}{\tan (x)} d x & =\int \frac{1}{u} d u \\
& =\ln |u|+C \\
& =\ln |\tan (x)|+C
\end{aligned}
$$

Check by differentiating this antiderivative to see make sure we get the original integrand.

Solutions:

10. $\int_{0}^{\pi / 4} \sin (x) \cos (x) d x$

Again, tricky: a product, but neither term is obviously a composition. Not a sum of two products, so unlikely to have come from prod rule. Choose u so $d u$ also appears.
$\frac{d}{d x}(\sin (x))=\cos (x)$, which is also in integrand.
Let $u=\sin (x)$. Then $\frac{d u}{d x}=\cos (x)$, so $d u=\cos (x) d x$.

$$
\begin{aligned}
\int_{0}^{\pi / 4} \sin (x) \cos (x) d x & =\int_{0}^{\sqrt{2} / 2} u d u \\
& =\left.\frac{1}{2} u^{2}\right|_{0} ^{\sqrt{2} / 2}
\end{aligned}
$$

Solutions:

11. $\int e^{x} \cos \left(e^{x}\right) d x$

Let $u=e^{x}$. Then $\frac{d u}{d x}=e^{x}$, so $d u=e^{x} d x$.

$$
\begin{aligned}
\int e^{x} \cos \left(e^{x}\right) d x & =\int \cos \left(e^{x}\right) \cdot e^{x} d x \\
& =\int \cos (u) d u \\
& =\sin (u)+C \\
& =\sin \left(e^{x}\right)+C
\end{aligned}
$$

Check by differentiating this antiderivative to see make sure we get the original integrand.

