Example:

Suppose we need to find $\int_{1}^{2} e^{-x^{2}} d x$.
We can't just find an antiderivative of $e^{-x^{2}}$ and then plug in the limits. So then what?

Approximate it!

Example:

Suppose we need to find $\int_{1}^{2} e^{-x^{2}} d x$.
We can't just find an antiderivative of $e^{-x^{2}}$ and then plug in the limits. So then what?

Approximate it!

- One way: Find a Taylor polynomial for $e^{-x^{2}}$, and then antidifferentiate that.

$$
\begin{aligned}
e^{-x^{2}} & \approx 1-x^{2}+\frac{x^{4}}{2!}-\frac{x^{6}}{3!}+\frac{x^{8}}{4!}-\frac{x^{10}}{5!}+\frac{x^{12}}{6!} \\
\int_{1}^{2} e^{-x^{2}} d x & \approx \int_{1}^{2} 1-x^{2}+\frac{x^{4}}{2!}-\frac{x^{6}}{3!}+\frac{x^{8}}{4!}-\frac{x^{10}}{5!}+\frac{x^{12}}{6!} d x \\
& \approx\left[x-\frac{x^{3}}{3}+\frac{x^{5}}{5 \cdot 2!}-\frac{x^{6}}{6 \cdot 3!}+\frac{x^{9}}{9 \cdot 4!}-\frac{x^{11}}{11 \cdot 5!}+\frac{x^{13}}{13 \cdot 6!}\right]_{1}^{2}
\end{aligned}
$$

Example: Approximating $\int_{1}^{2} e^{-x^{2}} d x$

Example: Approximating $\int_{1}^{2} e^{-x^{2}} d x$

Example: Approximating $\int_{1}^{2} e^{-x^{2}} d x$

In Class Work

Let $I=\int_{0}^{1} x \sin \left(x^{2}\right) d x$

1. Draw a sketch of L_{4}, and then calculate L_{4}.
Based on your sketch, does L_{4} overestimate or underestimate I ?
2. Repeat the above for R_{4}.
3. Sketch L_{10} and R_{10}. How does / compare to L_{10} and R_{10} ? That is, are they overestimates? underestimates?
4. Find the exact value of I by using u-substitution. Does your result agree with your previous answers?

Solutions

Let $I=\int_{0}^{1} x \sin \left(x^{2}\right) d x$

1. Draw a sketch of L_{4}, and then calculate L_{4}.

Based on your sketch, does L_{4} overestimate or underestimate I?

$$
\begin{aligned}
& \Delta x=\frac{1-0}{4}=\frac{1}{4} \\
& L_{4}=\frac{1}{4} f(0)+\frac{1}{4} f\left(\frac{1}{4}\right)+\frac{1}{4} f\left(\frac{2}{4}\right)+\frac{1}{4} f\left(\frac{3}{4}\right) \\
&=\frac{1}{4}\left(0+\frac{1}{4} \sin \left(\frac{1}{16}\right)+\frac{2}{4} \sin \left(\frac{4}{16}\right)\right. \\
&\left.+\frac{3}{4} \sin \left(\frac{9}{16}\right)\right) \\
& \approx 0.1348234536
\end{aligned}
$$

From sketch, L_{4} underestimates I.

Solutions

Let $I=\int_{0}^{1} x \sin \left(x^{2}\right) d x$
2. Draw a sketch of R_{4}, and then calculate R_{4}.

Based on your sketch, does R_{4} overestimate or underestimate I ?

$$
\begin{aligned}
\Delta x & =\frac{1-0}{4}=\frac{1}{4} \\
L_{4} & =\frac{1}{4} f\left(\frac{1}{4}\right)+\frac{1}{4} f\left(\frac{2}{4}\right)+\frac{1}{4} f\left(\frac{3}{4}\right)+\frac{1}{4} f(1) \\
& =\frac{1}{4}\left(\frac{1}{4} \sin \left(\frac{1}{16}\right)+\frac{2}{4} \sin \left(\frac{4}{16}\right)\right. \\
& =0.3451911998
\end{aligned}
$$

From sketch, R_{4} underestimates I.

Solutions

3. Let $I=\int_{0}^{1} x \sin \left(x^{2}\right) d x$. Sketch L_{10} and R_{10}.

L_{4}

R_{4}

As before, since $x \sin \left(x^{2}\right)$ is increasing, L_{4} underestimates and R_{4} overestimates I.

Solutions

4. Let $I=\int_{0}^{1} x \sin \left(x^{2}\right) d x$. Find the exact value of I by using u-substitution. Does your result agree with your previous answers?

Let $u=x^{2}$. Then $d u=2 x d x$. Also, when $x=0, u=0^{2}=0$, and when $x=1, u=1^{2}=1$.

$$
\begin{aligned}
I & =\frac{1}{2} \int_{0}^{1} \sin \left(x^{2}\right) 2 x d x \\
& =\frac{1}{2} \int_{0}^{1} \sin (u) d u=-\left.\frac{1}{2} \cos (u)\right|_{0} ^{1} \\
& =-\frac{1}{2}(\cos (1)-\cos (0)) \approx 0.2298488470
\end{aligned}
$$

As expected, our result for L_{4} under-estimated this signed area, and our result for R_{4} over-estimated it.

