Example:

Suppose we need to find $\int_1^2 e^{-x^2} dx$.

We can't just find an antiderivative of e^{-x^2} and then plug in the limits. So then what?

Approximate it!

Example:

Suppose we need to find $\int_1^2 e^{-x^2} dx$.

We can't just find an antiderivative of e^{-x^2} and then plug in the limits. So then what?

Approximate it!

One way: Find a Taylor polynomial for e^{-x²}, and then antidifferentiate that.

$$e^{-x^{2}} \approx 1 - x^{2} + \frac{x^{4}}{2!} - \frac{x^{6}}{3!} + \frac{x^{8}}{4!} - \frac{x^{10}}{5!} + \frac{x^{12}}{6!}$$

$$\int_{1}^{2} e^{-x^{2}} dx \approx \int_{1}^{2} 1 - x^{2} + \frac{x^{4}}{2!} - \frac{x^{6}}{3!} + \frac{x^{8}}{4!} - \frac{x^{10}}{5!} + \frac{x^{12}}{6!} dx$$

$$\approx \left[x - \frac{x^{3}}{3} + \frac{x^{5}}{5 \cdot 2!} - \frac{x^{6}}{6 \cdot 3!} + \frac{x^{9}}{9 \cdot 4!} - \frac{x^{11}}{11 \cdot 5!} + \frac{x^{13}}{13 \cdot 6!} \right]_{1}^{2}$$

Math 101-Calculus 1 (Sklensky)

Example: Approximating $\int_{1}^{2} e^{-x^{2}} dx$.

Math 101-Calculus 1 (Sklensky)

Example: Approximating $\int_{1}^{2} e^{-x^{2}} dx$.

Math 101-Calculus 1 (Sklensky)

In-Class Work

December 5, 2011 3 / 9

3

DQC

A D > A B > A B > A B >

Example: Approximating $\int_{1}^{2} e^{-x^{2}} dx$

Math 101-Calculus 1 (Sklensky)

In-Class Work

December 5, 2011 4 / 9

3

DQC

A D > A B > A B > A B >

In Class Work

- 1. Draw a sketch of L_4 , and then calculate L_4 .
 - Based on your sketch, does *L*₄ overestimate or underestimate *I*?
- 2. Repeat the above for R_4 .
- Sketch L₁₀ and R₁₀. How does I compare to L₁₀ and R₁₀? That is, are they overestimates? underestimates?
- 4. Find the exact value of *I* by using *u*-substitution. Does your result agree with your previous answers?

Let
$$I = \int_0^1 x \sin(x^2) dx$$

Draw a sketch of L₄, and then calculate L₄.
 Based on your sketch, does L₄ overestimate or underestimate *I*?

From sketch, L_4 underestimates I.

In-Class Work

Let
$$I = \int_0^1 x \sin(x^2) dx$$

Draw a sketch of R₄, and then calculate R₄.
 Based on your sketch, does R₄ overestimate or underestimate *I*?

From sketch, R_4 underestimates I.

Math 101-Calculus 1 (Sklensky)

In-Class Work

December 5, 2011 7 / 9

3. Let
$$I = \int_0^1 x \sin(x^2) \, dx$$
. Sketch L_{10} and R_{10} .

 L_4 R_4 As before, since $x \sin(x^2)$ is increasing, L_4 underestimates and R_4 overestimates *I*.

Math 101-Calculus 1 (Sklensky)

In-Class Work

December 5, 2011 8 / 9

4. Let $I = \int_0^1 x \sin(x^2) dx$. Find the exact value of I by using *u*-substitution. Does your result agree with your previous answers?

Let $u = x^2$. Then du = 2x dx. Also, when x = 0, $u = 0^2 = 0$, and when x = 1, $u = 1^2 = 1$.

$$I = \frac{1}{2} \int_0^1 \sin(x^2) 2x \, dx$$

= $\frac{1}{2} \int_0^1 \sin(u) \, du = -\frac{1}{2} \cos(u) \Big|_0^1$
= $-\frac{1}{2} \Big(\cos(1) - \cos(0) \Big) \approx 0.2298488470$

As expected, our result for L_4 under-estimated this signed area, and our result for R_4 over-estimated it.

Math 101-Calculus 1 (Sklensky)

In-Class Work

December 5, 2011 9 / 9