Recall:

- Any sum of areas of non-overlapping rectangles where the heights reflect the height of the function (and that don't overlap) is called a Riemann sum.

- Left, Right, and Midpoints sums are all types of Reimann sum.

Recall:

- Definition: Let $[a, b]$ be partitioned into n equal subintervals by $n+1$ points

$$
a=x_{0}<x_{1}<\cdots<x_{n-1}<x_{n}=b
$$

and let Δx be the width of the each subinterval.
In the i th subinterval, pick a point c_{i}. The Riemann sum for f and this partition is

$$
f\left(c_{1}\right) \Delta x+f\left(c_{2}\right) \Delta x+\cdots+f\left(c_{n}\right) \Delta x
$$

- Notice: Reimann Sums give us more flexibility in how we determine the height of our rectangles. They still are just approximations of the signed area between our curve and the x-axis.

Recall:

We developed sigma notation (or summation notation) as a short-hand method of writing sums whose terms follow predictable patterns.

Examples:

$$
\begin{aligned}
\sum_{i=1}^{4} i^{2} & =1^{2}+2^{2}+3^{2}+4^{2} \\
\sum_{j=0}^{3} 2 j+1 & =(2 \cdot 0+1)+(2 \cdot 1+1)+(2 \cdot 2+1)+(2 \cdot 3+1)
\end{aligned}
$$

Recall:

Write L_{15} for $\int_{1}^{2} e^{-x^{2}} d x$.

Recall:

Formal Definition of the Definite Integral:
$\int_{a}^{b} f(x) d x$ is defined to be the number (if one exists) to which all Riemann sums tend as the number of all subdivisions tends to ∞.

In symbols,

$$
\begin{aligned}
\int_{a}^{b} f(x) d x & =\lim _{n \rightarrow \infty}(\text { any Reimann sum with } n \text { rectangles }) \\
& =\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(c_{i}\right) \Delta x
\end{aligned}
$$

- c_{i} is any x in the i th subinterval of the partition, and $f\left(c_{i}\right)$ can thus be thought of as the height of the ith rectangle.
- Δx is the width of all the rectangles. (Remember $\Delta x=\frac{b-a}{n}$).
- Notice how similar the two sides of this equation look. $d x$ is the infinitesimal analogue of Δx.

In Class Work

Suppose f is the function whose graph is shown below.

Estimate the value of $\int_{-3}^{5} f(x) d x$ by
(a) evaluating a left sum with 4 equal subintervals.
(b) evaluating a right sum with 4 equal subintervals.
(c) evaluating a midpoint sum with 4 equal subintervals.

Solutions

(a) Estimate the value of $\int_{-3}^{5} f(x) d x$ by evaluating a left sum with 4 equal subintervals.

$$
\Delta x=\frac{5-(-3)}{4}=2
$$

$$
\text { Partition: } \quad-3<-1<1<3<5
$$

Lefthand endpoints: $-3,-1,1,3$

$$
\begin{aligned}
L_{4} & =2 \cdot f(-3)+2 \cdot f(-1)+2 \cdot f(1)+2 \cdot f(3) \\
& =2 \cdot 0+2 \cdot 3+2 \cdot(-1)+2 \cdot 0 \\
& =4
\end{aligned}
$$

Solutions

(b) Estimate the value of $\int_{-3}^{5} f(x) d x$ by evaluating a right sum with 4 equal subintervals.

$$
\Delta x=\frac{5-(-3)}{4}=2
$$

$$
\text { Partition: } \quad-3<-1<1<3<5
$$

Righthand endpoints: $-1,1,3,5$

$$
\begin{aligned}
R_{4} & =2 \cdot f(-1)+2 \cdot f(1)+2 \cdot f(3)+2 \cdot f(5) \\
& =2 \cdot 3+2 \cdot(-1)+2 \cdot 0+2 \cdot 3 \\
& =10
\end{aligned}
$$

Solutions

(c) Estimate the value of $\int_{-3}^{5} f(x) d x$ by evaluating a midpoint sum with 4 equal subintervals.

$$
\begin{aligned}
& \quad \begin{aligned}
& \Delta x=\frac{5-(-3)}{4}=2 \\
& M_{4}=2 \cdot f(-2)+2 \cdot f(0)+2 \cdot f(2)+2 \cdot f(4) \\
&=2 \cdot 2+2 \cdot 0+2 \cdot-2+2 \cdot 1 \\
&=2
\end{aligned}
\end{aligned}
$$

