
Recall:

I Any sum of areas of non-overlapping rectangles where the heights
reflect the height of the function (and that don’t overlap) is called a
Riemann sum.

I Left, Right, and Midpoints sums are all types of Reimann sum.
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Recall:

I Definition: Let [a, b] be partitioned into n equal subintervals by
n + 1 points

a = x0 < x1 < · · · < xn−1 < xn = b

and let ∆x be the width of the each subinterval.

In the ith subinterval, pick a point ci . The Riemann sum for f and
this partition is

f (c1)∆x + f (c2)∆x + · · ·+ f (cn)∆x

I Notice: Reimann Sums give us more flexibility in how we determine
the height of our rectangles. They still are just approximations of the
signed area between our curve and the x-axis.
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Recall:

We developed sigma notation (or summation notation) as a short-hand
method of writing sums whose terms follow predictable patterns.
Examples:

4∑
i=1

i2 = 12 + 22 + 32 + 42

3∑
j=0

2j + 1 = (2 · 0 + 1) + (2 · 1 + 1) + (2 · 2 + 1) + (2 · 3 + 1)
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Recall:

Write L15 for

∫ 2
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Recall:
Formal Definition of the Definite Integral:∫ b

a
f (x) dx is defined to be the number (if one exists) to which all

Riemann sums tend as the number of all subdivisions tends to ∞.

In symbols,∫ b

a
f (x) dx = lim

n→∞

(
any Reimann sum with n rectangles

)
= lim

n→∞

n∑
i=1

f (ci )∆x

I ci is any x in the ith subinterval of the partition, and f (ci ) can thus
be thought of as the height of the ith rectangle.

I ∆x is the width of all the rectangles. (Remember ∆x = b−a
n ).

I Notice how similar the two sides of this equation look. dx is the
infinitesimal analogue of ∆x .
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In Class Work

Suppose f is the function whose graph is shown below.

Estimate the value of

∫ 5

−3
f (x) dx by

(a) evaluating a left sum with 4 equal subintervals.

(b) evaluating a right sum with 4 equal subintervals.

(c) evaluating a midpoint sum with 4 equal subintervals.
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Solutions

(a) Estimate the value of

∫ 5

−3
f (x) dx

by evaluating a left sum with 4 equal
subintervals.

∆x =
5− (−3)

4
= 2

Partition: −3 < −1 < 1 < 3 < 5

Lefthand endpoints: -3, -1, 1, 3

L4 = 2 · f (−3) + 2 · f (−1) + 2 · f (1) + 2 · f (3)

= 2 · 0 + 2 · 3 + 2 · (−1) + 2 · 0
= 4
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Solutions

(b) Estimate the value of

∫ 5

−3
f (x) dx

by evaluating a right sum with 4 equal
subintervals.

∆x =
5− (−3)

4
= 2

Partition: −3 < −1 < 1 < 3 < 5

Righthand endpoints: -1, 1, 3, 5

R4 = 2 · f (−1) + 2 · f (1) + 2 · f (3) + 2 · f (5)

= 2 · 3 + 2 · (−1) + 2 · 0 + 2 · 3
= 10
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Solutions

(c) Estimate the value of

∫ 5

−3
f (x) dx by

evaluating a midpoint sum with 4 equal
subintervals.

∆x =
5− (−3)

4
= 2

Partition: −3 < −1 < 1 < 3 < 5

The midpoints of the four subintervals:
-2, 0, 2, 4

M4 = 2 · f (−2) + 2 · f (0) + 2 · f (2) + 2 · f (4)

= 2 · 2 + 2 · 0 + 2 · −2 + 2 · 1
= 2
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