Recall:

- The n-th degree Taylor Polynomial for $f(x)$ with basepoint x_{0} is given by the formula

$$
P_{n}(x)=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+\frac{f^{\prime \prime}\left(x_{0}\right)}{2}\left(x-x_{0}\right)^{2}+\cdots+\frac{f^{(n)}\left(x_{0}\right)}{n!}\left(x-x_{0}\right)^{n}
$$

- We saw that for $f(x)=\cos (x)$ and $x_{0}=0$

$$
P_{6}(x)=1-\frac{x^{2}}{2}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}
$$

and that for $f(x)=\sin (x)$ and $x_{0}=0$

$$
P_{6}(x)=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}
$$

- Notice that we could also have found this out using $(\cos (x))^{\prime}=-\sin (x)$.

In Class Work

1. For $f(x)=\ln (x), x_{0}=1$:
(a) Find $P_{5}(x)$, the fifth degree Taylor polynomial for $f(x)$ based at x_{0}.
(b) If you have access to graphing technology, verify your answer by graphing $P_{5}(x)$ and $f(x)$ on the same set of axes.
(c) Use $P_{5}(x)$ to find an approximation for $\ln (1.5)$. Without using your calculator to find $\ln (1.5)$ "exactly", how can you tell whether this is larger or smaller than the exact value?
(d) Find $P_{5}(1), P_{5}^{\prime}(1), P_{5}^{\prime \prime}(1), P_{5}^{\prime \prime \prime}(1), P_{5}^{(4)}(1), P_{5}^{(5)}(1)$ and $P_{5}^{(6)}(1)$, and compare the results to $f(1), f^{\prime}(1), f^{\prime \prime}(1), f^{\prime \prime \prime}(1), f^{(4)}(1), f^{(5)}(1)$ and $f^{(6)}(1)$.
(e) What do you think $P_{15}(x)$ is?

Solutions

1. (a) Find $P_{5}(x)$, the fifth degree Taylor polynomial for $f(x)=\ln (x)$ and $x_{0}=1$.

$$
P_{5}(x)=a_{0}+a_{1}(x-1)+a_{2}(x-1)^{2}+a_{3}(x-1)^{3}+a_{4}(x-1)^{4}+a_{5}(x-1)^{5}
$$

k	$f^{(k)}(x)$	$f^{(k)}(1)$	a_{k}
0	$\ln (x)$	0	$\frac{0}{0!}=\frac{0}{1}=0$

$1 \quad \frac{1}{x}=x^{-1} \quad 1 \quad \frac{1}{1!}=1$

Thus we have
$2-x^{-2}=-\frac{1}{x^{2}} \quad-1 \quad \frac{-1}{2!}=-\frac{1}{2}$

$$
P_{5}(x)=0+1(x-1)-\frac{(x-1)^{2}}{2}
$$

$3 \quad 2 x^{-3}=\frac{2}{x^{3}} \quad 2 \quad \frac{2}{3!}=\frac{1}{3}$ $+\frac{(x-1)^{3}}{3}-\frac{(x-1)^{4}}{4}$
$\begin{array}{rlrlrl}4 & -3!x^{-4} & =-\frac{3!}{x^{4}} & -3! & -\frac{3!}{4!} & =- \\ 5 & 4!x^{-5} & =\frac{4!}{x^{5}} & 4! & \frac{4!}{5!} & =\frac{1}{5}\end{array}$

Solutions

1 (b). Verify your answer by graphing $P_{5}(x)$ and $f(x)$ on the same set of axes.

Solutions

$1(c)$. Use $P_{5}(x)$ to find an approximation for $\ln (1.5)$.

$$
\ln (1.5) \approx P_{5}(1.5)=.5-\frac{.5^{2}}{2}+\frac{.5^{3}}{3}-\frac{.5^{4}}{4}+\frac{.5^{5}}{5}=0.4073 .
$$

From a graph of $P_{5}(x)$ and $\ln (x)$ near $x=1.5$, this is an over-estimate.

The estimate Maple gives for $\ln (1.5)$ is $\ln (1.5)=.4055$. Pretty close!

Solutions

$$
\text { 1(d) } \begin{aligned}
P_{5}(x) & =(x-1)-\frac{(x-1)^{2}}{2}+\frac{(x-1)^{3}}{3}-\frac{(x-1)^{4}}{4}+\frac{(x-1)^{5}}{5} \\
P_{5}^{\prime}(x) & =1-(x-1)+(x-1)^{2}-(x-1)^{3}+(x-1)^{4} \\
P_{5}^{\prime \prime}(x) & =-1+2(x-1)-3(x-1)^{2}+4(x-1)^{3} \\
P_{5}^{\prime \prime \prime}(x) & =2-3 \cdot 2(x-1)+4 \cdot 3(x-1)^{2} \\
P_{5}^{(4)}(x) & =-3!+4 \cdot 3 \cdot 2(x-1) \quad P_{5}^{(5)}(x)=4!\quad P_{5}^{(6)}(x)=0
\end{aligned}
$$

$\ln (1)$	0	$P_{5}(1)$	0
$\left.\left(\frac{1}{x}\right)\right\|_{x=1}$	1	$P_{5}^{\prime}(1)$	1
$\left.\left(-\frac{1}{x^{2}}\right)\right\|_{x=1}$	-1	$P_{5}^{\prime \prime}(1)$	-1
$\left.\left(\frac{2}{x^{3}}\right)\right\|_{x=1}$	2	$P_{5}^{\prime \prime \prime}(1)$	2
$\left.\left(-\frac{3 \cdot 2}{x^{4}}\right)\right\|_{x=1}$	$-3!$	$P_{5}^{(4)}(1)$	$-3!$
$\left.\left(\frac{4!}{x^{5}}\right)\right\|_{x=1}$	$4!$	$P_{5}^{(5)}(1)$	$4!$
$-\left.\left(\frac{5!}{x^{6}}\right)\right\|_{x=1}$	$-5!$	$P_{5}^{(6)}(1)$	0

Solutions

$1(\mathrm{e})$. What do you think $P_{15}(x)$ is?
Looking at the pattern, it looks to me as if

$$
\begin{aligned}
P_{15}(x)= & 0+1(x-1)-\frac{(x-1)^{2}}{2}+\frac{(x-1)^{3}}{3}-\frac{(x-1)^{4}}{4}+\frac{(x-1)^{5}}{5} \\
& -\frac{(x-1)^{6}}{6}+\frac{(x-1)^{7}}{7}-\ldots-\frac{(x-1)^{14}}{14}+\frac{(x-1)^{15}}{15}
\end{aligned}
$$

Note: If we use P_{15} to approximate $\ln (1.5)$, we get

$$
\ln (1.5) \approx P_{15}(1.5)=0.4054657568
$$

Compare to

$$
\ln (1.5)=0.4054651081 \ldots
$$

Much closer, for not much extra effort!

More In Class Work

Using only what we know so far - that the integral is the signed area between the graph and the x-axis - evaluate the following integrals by graphing the function over the designated region.

$$
\begin{array}{ll}
\text { 1. } \int_{0}^{4} 2 x d x & \text { 4. } \int_{-1}^{1} x^{3} d x \\
\text { 2. } \int_{-1}^{0} 2 x d x & \text { 5. } \int_{0}^{\pi} \cos (x) d x \\
\text { 3. } \int_{-1}^{4} 2 x d x & \text { 6. } \int_{2}^{0} x+2 d x
\end{array}
$$

Solutions

1. $\int_{0}^{4} 2 x d x$

- All of the area is above the x-axis, so the integral will be positive.
- This is just a triangle with base 4 and height 8 .
- $\int_{0}^{4} 2 x d x=\frac{1}{2}(4)(8)=16$.

Solutions

2. $\int_{-1}^{0} 2 x d x$

- All of the area is below the x-axis, so the integral will be negative.
- This is just a triangle with base 1 and height 2.
- $\int_{-1}^{0} 2 x d x=-\frac{1}{2}(1)(2)=-1$.

Solutions

3. $\int_{-1}^{4} 2 x d x$

- The region from -1 to 0 is negative, and the region from 0 to 4 is positive.
- $\int_{-1}^{4} 2 x d x=\int_{-1}^{0} 2 x d x+\int_{0}^{4} 2 x d x$
$=-1+16$
$=15$.

Solutions

4. $\int_{-1}^{1} x^{3} d x$

- Half of this graph is above the x-axis while the other half is below.
- The two sides are symmetric across the origin - so the negative part will cancel out the positive part.
- $\int_{-1}^{1} x^{3} d x=0$

Solutions

5. $\int_{0}^{\pi} \cos (x) d x$

As with the previous problem, the signed area of the region above the x-axis will cancel out with signed area of the region below the x-axis, so

$$
\int_{0}^{\pi} \cos (x) d x=0
$$

Solutions

6. $\int_{2}^{0} x+2 d x$

- The interval goes backwards: from 2 to 0 .
- With regular area, this doesn't matter.
- Since integrals are signed area, and since they are defined as going from $x=a$ to $x=b$, direction matters.
- Thus when moving from right to left rather than from left to right, we expect the signed area to be different.
- The absolute value of it (the area) can't be depend on direction, so the only thing that can be different is the sign.

$$
\int_{2}^{0} x+2 d x=-\int_{0}^{2} x+2 d x
$$

Solutions

6. $\int_{2}^{0} x+2 d x=-\int_{0}^{2} x+2 d x$

- This region is made up of a triangle sitting on a rectangle.
- The rectangle has $b=2$ and $h=2$ (and so is a square), with area 4.
- The triangle has $b=2$ and $h=2$, so area is $\frac{1}{2}(4)=2$.
- Thus $\int_{0}^{2} x+2 d x=2+4=6$
- And hence $\int_{2}^{0} x+2 d x=-6$.

