## Recall:

Recall: We use the notation $\int_{a}^{b} f(x) d x$ to represent the signed area between $f(x)$ and the $x$-axis from $x=a$ to $x=b$.

We read this as the integral of $f(x)$ from a to $b$.
By signed area, we mean that if we are going from left to right (that is, if $a \leq b$ ), then regions above the $x$-axis have positive area, while regions below the $x$-axis have negative area.

Although we will see later that $d x$ has some deeper historical meaning, for now the $d x$ notation at the end of the expression serves two purposes: (1) it tells us what our variable is, in case that is not otherwise clear (just as the $\frac{d}{d x}$ notation does for differentiation), and (2) it signals that we have reached the end of the expression being integrated.

## Goal:

How do you measure the area of a region in the plane?

Some shapes are easy, like squares, rectangles, triangles, circles.

What about regions bounded by a graph $y=f(x)$, the $x$-axis, and the lines $x=a, x=b$ ?

Or even regions bounded above and below by functions?

## In Class Work

Using only what we know so far - that the integral is the signed area between the graph and the $x$-axis - evaluate the following integrals by graphing the function over the designated region.

$$
\begin{array}{ll}
\text { 1. } \int_{0}^{4} 2 x d x & \text { 4. } \int_{-1}^{1} x^{3} d x \\
\text { 2. } \int_{-1}^{0} 2 x d x & \text { 5. } \int_{0}^{\pi} \cos (x) d x \\
\text { 3. } \int_{-1}^{4} 2 x d x & \text { 6. } \int_{2}^{0} x+2 d x
\end{array}
$$

## Solutions

2. $\int_{-1}^{0} 2 x d x$


- All of the area is below the $x$-axis, so the integral will be negative.
- This is just a triangle with base 1 and height 2.
- $\int_{-1}^{0} 2 x d x=-\frac{1}{2}(1)(2)=-1$.


## Solutions

3. $\int_{-1}^{4} 2 x d x$


- The region from -1 to 0 is negative, and the region from 0 to 4 is positive.
- $\int_{-1}^{4} 2 x d x=\int_{-1}^{0} 2 x d x+\int_{0}^{4} 2 x d x$
$=-1+16$
$=15$.


## Solutions

4. $\int_{-1}^{1} x^{3} d x$


- Half of this graph is above the $x$-axis while the other half is below.
- The two sides are symmetric across the origin - so the negative part will cancel out the positive part.
- $\int_{-1}^{1} x^{3} d x=0$


## Solutions

5. $\int_{0}^{\pi} \cos (x) d x$


As with the previous problem, the signed area of the region above the $x$-axis will cancel out with signed area of the region below the $x$-axis, so

$$
\int_{0}^{\pi} \cos (x) d x=0
$$

## Solutions

6. $\int_{2}^{0} x+2 d x$

- The interval goes backwards: from 2 to 0 .
- With regular area, this doesn't matter.
- Since integrals are signed area, and since they are defined as going from $x=a$ to $x=b$, direction matters.
- Thus when moving from right to left rather than from left to right, we expect the signed area to be different.
- The absolute value of it (the area) can't be depend on direction, so the only thing that can be different is the sign.

$$
\int_{2}^{0} x+2 d x=-\int_{0}^{2} x+2 d x
$$

## Solutions

6. $\int_{2}^{0} x+2 d x=-\int_{0}^{2} x+2 d x$

- This region is made up of a triangle sitting on a rectangle.
- The rectangle has $b=2$ and $h=2$ (and so is a square), with area 4.
- The triangle has $b=2$ and $h=2$, so area is $\frac{1}{2}(4)=2$.
- Thus $\int_{0}^{2} x+2 d x=2+4=6$
- And hence $\int_{2}^{0} x+2 d x=-6$.

