Examples:

$$
\begin{aligned}
& \int_{0}^{1} 2 x d x=\frac{1}{2}(1)(2)=1 \\
& \int_{0}^{2} 2 x d x=\frac{1}{2}(2)(4)=4 \\
& \int_{0}^{3} 2 x d x=\frac{1}{2}(3)(6)=9 \\
& \int_{0}^{4} 2 x d x=\frac{1}{2}(4)(8)=16
\end{aligned}
$$

Examples:

$$
\begin{aligned}
& \int_{0}^{1} 2 x d x=\frac{1}{2}(1)(2)=1 \\
& \int_{0}^{2} 2 x d x=\frac{1}{2}(2)(4)=4 \\
& \int_{0}^{3} 2 x d x=\frac{1}{2}(3)(6)=9 \\
& \int_{0}^{4} 2 x d x=\frac{1}{2}(4)(8)=16
\end{aligned}
$$

What is $\int_{0}^{a} 2 x d x$?

In Class Work

1. Let $f(x)=2$ and $a=0$. Then $A_{f}(x)=\int_{0}^{x} 2 d t$.
(a) By sketching a graph, find $A_{f}(0), A_{f}(3), A_{f}(-3), A_{f}(4)$
(b) Based on the evidence you found in part (a), you may have a hypothesis about what a formula for $A_{f}(x)$ might be. Show that this hypothesis is true for $x>0$, again using a graph
(c) Show that your hypothesis is true for $x<0$.
(d) How is your result, $A_{f}(x)$, related to the original function $f(x)=2$?
2. Let $f(x)=3$ and $a=1$. Following a procedure similar to in Problem $1(b)$ and $1(c)$, find a formula for $A_{f}(x)$.

Hint: You may want to break it into two situations: one where $x>1$ and one where $x<1$.

Solutions:

1. Let $f(x)=2$ and $a=0$. Then $A_{f}(x)=\int_{0}^{x} 2 d t$.
(a) Find $A_{f}(0), A_{f}(3), A_{f}(-3), A_{f}(4)$
$A_{f}(0)=\int_{0}^{0} 2 d t=$ signed area from 0 to 0 under $y=2=0$
$A_{f}(3)=\int_{0}^{3} 2 d t=$ signed area from 0 to 3 under $y=2$
$=$ area of rectangle of base 3 and height $2=6$
$A_{f}(-3)=\int_{0}^{-3} 2 d t=$ signed area from 0 to -3 under $y=2$
$=-($ signed area from -3 to 0 under $y=2)$
$=-($ area of rectangle with base 3 and height 2$)=-6$
$A_{f}(4)=\int_{0}^{4}$ signed area from 0 to 4 under $y=2$

Solutions:

1. Let $f(x)=2$ and $a=0$. Then $A_{f}(x)=\int_{0}^{x} 2 d t$.
(b) Based on the evidence you found in part (a), you may have a hypothesis about what a formula for $A_{f}(x)$ might be. Show that this hypothesis is true for $x>0$.

Summarizing our results, we find that

x	$A_{f}(x)$
0	0
3	6
-3	-6
4	8

It seems as if $A_{f}(x)=2 x$.
For $x>0$, we have a rectangle of base x and height 2 , so $A_{f}(x)=2 x$.

Solutions:

1. Let $f(x)=2$ and $a=0$. Then $A_{f}(x)=\int_{0}^{x} 2 d t$.
(c) Show that your hypothesis is true for $x<0$.

This is a little bit trickier because of the signs.
For $x<0$, we're going backwards.

$$
A_{f}(x)=\int_{0}^{x} 2 d t=-\int_{x}^{0} 2 d t
$$

Also, while the height of our rectangle is still 2, the base is no longer x, as lengths must be positive. Since x is negative, the length of our base is $-x$. Thus

$$
A_{f}(x)=-2(-x)=2 x
$$

Solutions

2. Let $f(x)=3$ and $a=1$. Find a formula for $A_{f}(x)$.
$A_{f}(x)=\int_{1}^{x} 3 d t=$ signed area from $t=1$ to $t=x$ between the horizontal line $y=3$ and the x-axis. No matter where x is (except if it's 1) this is a rectangle of height 3 . The base depends on x.

When $x>1$: Because x is to the right of 1 , and the region is above the x axis, the signed area will be positive.
$\mathrm{h}=3, \mathrm{~b}=$ dist from 1 to $\mathrm{x}=\mathrm{x}-1 \Longrightarrow A_{f}(x)=3(x-1)$.
When $x=1$: This is a region with zero area, so $A_{f}(1)=0$
When $x<1$: Because x is to the left of $1, A_{f}(x)=-\int_{x}^{1} 3 d t$. $\mathrm{h}=3, \mathrm{~b}=$ dist from x to $1=1-x \Rightarrow A_{f}(x)=-3(1-x)=3(x-1)$.
Thus in all three cases, $\int_{1}^{x} 3 d t=3(x-1)=3 x-3$. 3 .Class Work
November 17, 2011

In Class Work

Let $f(x)=2 x+4$.

1. Use what we already know to find a formula for $F(x)=\int_{0}^{x} f(t) d t$. (That is, there is no need to draw more pictures.)
2. Use (a) and techniques from Section 5.1 to find $G(x)=\int_{-2}^{x} f(t) d t$.
3. Use (a) or (b) and techniques from Section 5.1 to find $H(x)=\int_{1}^{x} f(t) d t$.

Solutions

Let $f(x)=2 x+4$.

1. Use what we already know to find a formula for $F(x)=\int_{0}^{x} f(t) d t$.

$$
\begin{aligned}
\int_{0}^{x} 2 t+4 d t & =2 \int_{0}^{x} t d t+2 \int_{0}^{x} 2 d t \\
& =2\left(\frac{1}{2} x^{2}\right)+2(2 x)=x^{2}+4 x
\end{aligned}
$$

2. Use (a) and techniques from Section 5.1 to find $G(x)=\int_{-2}^{x} f(t) d t$

$$
\begin{aligned}
\int_{-2}^{x} 2 t+4 d t & =\int_{-2}^{0} 2 t+4 d t+\int_{0}^{x} 2 t+4 d t \\
& =(\text { area of a } \triangle \text { of base } 2 \text { and height } 4)+\left(x^{2}+4 x\right) \\
& =\left(x^{2}+4 x\right)+(4)
\end{aligned}
$$

Solutions

Let $f(x)=2 x+4$.
3. Use (a) or (b) and techniques from Section 5.1 to find

$$
H(x)=\int_{1}^{x} f(t) d t
$$

$$
\begin{aligned}
\int_{1}^{x} 2 t+4 d t & =\int_{-2}^{x} 2 t+4-\int_{-2}^{1} 2 t+4 d t \\
& =\left(x^{2}+4 x+4\right)-(\text { area of triangle of base } 3 \text { and heig } \\
& =\left(x^{2}+4 x+4\right)-(9) \\
& =x^{2}+4 x-5
\end{aligned}
$$

Summary :

$$
\begin{aligned}
\int_{0}^{x} 2 d t & =2 x \\
\int_{1}^{x} 3 d t & =3 x-3 \\
\int_{0}^{x} t d t & =\frac{1}{2} x^{2} \\
\int_{0}^{x} 2 t+4 d t & =x^{2}+4 x \\
\int_{-2}^{x} 2 t+4 d t & =x^{2}+4 x+4 \\
\int_{1}^{x} 2 t+4 d t & =x^{2}+4 x-5
\end{aligned}
$$

In every example we've looked at so far, the area function is an antiderivative of the original function. Coincidence?

