Recall:

$$\int_0^x 2 dt = 2x$$
$$\int_0^x t dt = \frac{1}{2}x^2$$
$$\int_0^x 2t dt = x^2$$

Math 101-Calculus 1 (Sklensky)

In-Class Work

November 18, 2011 1 / 6

Recall:

$$\int_0^x 2 dt = 2x$$
$$\int_0^x t dt = \frac{1}{2}x^2$$
$$\int_0^x 2t dt = x^2$$
$$\int_0^x t + 2 dt = \frac{1}{2}x^2 + 2x$$

In every example we've looked at so far, the area function is an antiderivative of the original function. Coincidence?

Math 101-Calculus 1 (Sklensky)

In-Class Work

November 18, 2011 1 / 6

Recall:

$$\int_{0}^{x} 2 \, dt = 2x$$

$$\int_{0}^{x} t \, dt = \frac{1}{2}x^{2}$$

$$\int_{0}^{x} 2t \, dt = x^{2}$$

$$\int_{0}^{x} t + 2 \, dt = \frac{1}{2}x^{2} + 2x$$

$$\int_{0}^{x} 7t + 4 \, dt = \frac{7}{2}x^{2} + 4x$$

In every example we've looked at so far, the area function is an antiderivative of the original function. Coincidence?

Math 101-Calculus 1 (Sklensky)

In-Class Work

November 18, 2011 1 / 6

In Class Work

1.
$$\int_{0}^{\pi/2} \cos(x) dx$$

2. $\int_{1}^{4} x^{3} - 2x dx$
3. $\int_{-1}^{2} e^{x} dx$
4. $\int_{1}^{3} 3x^{2} \ln(x) + x^{3} \left(\frac{1}{x}\right) dx$

Math 101-Calculus 1 (Sklensky)

In-Class Work

November 18, 2011 2 / 6

1. $\int_{0}^{\pi/2} \cos(x) \, dx$ $\sin(x) \text{ is an antiderivative of } \cos(x), \text{ so from the FTC v2, we know}$

$$\int_0^{\pi/2} \cos(x) \ dx = \sin(x) \ \text{from 0 to } \pi/2 \ = \sin(\pi/2) - \sin(0) = 1.$$

2.
$$\int_{1}^{4} x^{3} - 2x \, dx$$
$$\frac{x^{4}}{4} - x^{2} \text{ is an antiderivative of } x^{3} - 2x \text{, so from the FTC v2, we know}$$
$$\int_{1}^{4} x^{3} - 2x \, dx = \left(\frac{x^{4}}{4} - x^{2}\right) \text{ from 1 to } 4 = \left(\frac{4^{4}}{4} - 16\right) - \left(\frac{1}{4} - 1\right) = 48 + \frac{3}{4}$$

Math 101-Calculus 1 (Sklensky)

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 = のへで

3. $\int_{-1}^{2} e^{x} dx$ e^{x} is of course an antiderivative of e^{x} , so from the FTC v2, we know

$$\int_{-1}^{2} e^{x} dx = e^{x} \text{ from } -1 \text{ to } 2 = e^{2} - e^{-1}$$

Math 101-Calculus 1 (Sklensky)

In-Class Work

November 18, 2011 4 / 6

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 = 釣�?

4.
$$\int_{1}^{3} 3x^{2} \ln(x) + x^{3} \left(\frac{1}{x}\right) dx$$

If $f(x) = 3x^{2} \ln(x) + x^{3} \left(\frac{1}{x}\right)$, then I know from the FTC that
$$\int_{1}^{3} 3x^{2} \ln(x) + x^{3} \left(\frac{1}{x}\right) dx = F(3) - F(1),$$

where F(x) is any antiderivative of $3x^2 \ln(x) + x^3 \left(\frac{1}{x}\right)$. So ...

- **Goal 1:** find an antiderivative F(x) of $3x^2 \ln(x) + x^3 \left(\frac{1}{x}\right)$.
 - Whatever F might be, it has to differentiate into this sum of two products.
 - The product rule produces a sum of two products, with related pairs of factors.
 - When I look more closely at 3x² ln(x) + x³ (¹/_x), I see that 3x² is the derivative of x³ and ¹/_x is the derivative of ln(x). Product rule it is!
 - Try: $F(x) = x^3 \ln(x)$.
 - Check: $F'(x) = (x^3)' \cdot \ln(x) + x^3 \cdot (\ln(x))' = 3x^2 \ln(x) + x^3 \ln(x)$
 - Conclusion: $F(x) = x^3 \ln(x)$.

Math 101-Calculus 1 (Sklensky)

4.
$$\int_{1}^{3} 3x^{2} \ln(x) + x^{3} \left(\frac{1}{x}\right) dx$$

If $f(x) = 3x^{2} \ln(x) + x^{3} \left(\frac{1}{x}\right)$, then I know from the FTC that
$$\int_{1}^{3} 3x^{2} \ln(x) + x^{3} \left(\frac{1}{x}\right) dx = F(3) - F(1),$$

where F(x) is any antiderivative of $3x^2 \ln(x) + x^3 \left(\frac{1}{x}\right)$.

• **Goal 1:** Find an antiderivative F(x) of $3x^2 \ln(x)$:

$$F(x) = x^3 \ln(x)$$

 Goal 2: find the value of the definite integral Using FTC v2,

$$\int_{1}^{3} 3x^{2} \ln(x) + x^{3} \left(\frac{1}{x}\right) dx = F(3) - F(1)$$

= $[3(3)^{2} \ln(3)] - [3(1)^{2} \ln(1)] = 27 \ln(3).$

Math 101-Calculus 1 (Sklensky)