Recall:

$$
\begin{aligned}
\int_{0}^{x} 2 d t & =2 x \\
\int_{0}^{x} t d t & =\frac{1}{2} x^{2} \\
\int_{0}^{x} 2 t d t & =x^{2}
\end{aligned}
$$

In every example we've looked at so far, the area function is an antiderivative of the original function. Coincidençe?

Recall:

$$
\begin{aligned}
\int_{0}^{x} 2 d t & =2 x \\
\int_{0}^{x} t d t & =\frac{1}{2} x^{2} \\
\int_{0}^{x} 2 t d t & =x^{2} \\
\int_{0}^{x} t+2 d t & =\frac{1}{2} x^{2}+2 x
\end{aligned}
$$

In every example we've looked at so far, the area function is an antiderivative of the original function. Coincidence?

Recall:

$$
\begin{aligned}
\int_{0}^{x} 2 d t & =2 x \\
\int_{0}^{x} t d t & =\frac{1}{2} x^{2} \\
\int_{0}^{x} 2 t d t & =x^{2} \\
\int_{0}^{x} t+2 d t & =\frac{1}{2} x^{2}+2 x \\
\int_{0}^{x} 7 t+4 d t & =\frac{7}{2} x^{2}+4 x
\end{aligned}
$$

In every example we've looked at so far, the area function is an antiderivative of the original function. Coincidence?

In Class Work

1. $\int_{0}^{\pi / 2} \cos (x) d x$
2. $\int_{1}^{4} x^{3}-2 x d x$
3. $\int_{-1}^{2} e^{x} d x$
4. $\int_{1}^{3} 3 x^{2} \ln (x)+x^{3}\left(\frac{1}{x}\right) d x$

Solutions

$$
\begin{aligned}
& \text { 1. } \int_{0}^{\pi / 2} \cos (x) d x \\
& \sin (x) \text { is an antiderivative of } \cos (x) \text {, so from the FTC v2, we know } \\
& \int_{0}^{\pi / 2} \cos (x) d x=\sin (x) \text { from } 0 \text { to } \pi / 2=\sin (\pi / 2)-\sin (0)=1
\end{aligned}
$$

2. $\int_{1}^{4} x^{3}-2 x d x$
$\frac{x^{4}}{4}-x^{2}$ is an antiderivative of $x^{3}-2 x$, so from the FTC $v 2$, we know

$$
\int_{1}^{4} x^{3}-2 x d x=\left(\frac{x^{4}}{4}-x^{2}\right) \text { from } 1 \text { to } 4=\left(\frac{4^{4}}{4}-16\right)-\left(\frac{1}{4}-1\right)=48+\frac{3}{4}
$$

Solutions

3. $\int_{-1}^{2} e^{x} d x$ e^{x} is of course an antiderivative of e^{x}, so from the FTC v2, we know

$$
\int_{-1}^{2} e^{x} d x=e^{x} \text { from }-1 \text { to } 2=e^{2}-e^{-1}
$$

Solutions

4. $\int_{1}^{3} 3 x^{2} \ln (x)+x^{3}\left(\frac{1}{x}\right) d x$

If $f(x)=3 x^{2} \ln (x)+x^{3}\left(\frac{1}{x}\right)$, then I know from the FTC that

$$
\int_{1}^{3} 3 x^{2} \ln (x)+x^{3}\left(\frac{1}{x}\right) d x=F(3)-F(1)
$$

where $F(x)$ is any antiderivative of $3 x^{2} \ln (x)+x^{3}\left(\frac{1}{x}\right)$. So ...

- Goal 1: find an antiderivative $F(x)$ of $3 x^{2} \ln (x)+x^{3}\left(\frac{1}{x}\right)$.
- Whatever F might be, it has to differentiate into this sum of two products.
- The product rule produces a sum of two products, with related pairs of factors.
- When I look more closely at $3 x^{2} \ln (x)+x^{3}\left(\frac{1}{x}\right)$, I see that $3 x^{2}$ is the derivative of x^{3} and $\frac{1}{x}$ is the derivative of $\ln (x)$. Product rule it is!
- Try: $F(x)=x^{3} \ln (x)$.
- Check: $F^{\prime}(x)=\left(x^{3}\right)^{\prime} \cdot \ln (x)+x^{3} \cdot(\ln (x))^{\prime}=3 x^{2} \ln (x)+x^{3} \ln (x)$
- Conclusion: $F(x)=x^{3} \ln (x)$.

Solutions

4. $\int_{1}^{3} 3 x^{2} \ln (x)+x^{3}\left(\frac{1}{x}\right) d x$

If $f(x)=3 x^{2} \ln (x)+x^{3}\left(\frac{1}{x}\right)$, then I know from the FTC that

$$
\int_{1}^{3} 3 x^{2} \ln (x)+x^{3}\left(\frac{1}{x}\right) d x=F(3)-F(1)
$$

where $F(x)$ is any antiderivative of $3 x^{2} \ln (x)+x^{3}\left(\frac{1}{x}\right)$.

- Goal 1: Find an antiderivative $F(x)$ of $3 x^{2} \ln (x)$:

$$
F(x)=x^{3} \ln (x)
$$

- Goal 2: find the value of the definite integral Using FTC v2,

$$
\begin{aligned}
\int_{1}^{3} 3 x^{2} \ln (x)+x^{3}\left(\frac{1}{x}\right) d x & =F(3)-F(1) \\
& =\left[3(3)^{2} \ln (3)\right]-\left[3(1)^{2} \ln (1)\right]=27 \ln (3)
\end{aligned}
$$

