Guidelines when Optimizing:

- Draw a picture and label it. Do not try to visualize in your head.
- Determine what the variables are
- Decide which quantity is to be optimized
- Write an expression for the qty to be optimized-objective function (The objective is to optimize it). Often originally involves 2 or more variables. It is an expression, not an equation.
- Determine any constraints upon the variables: is there a condition that must be satisfied by the variables? Are the variables related to each other in some way?
An equation that describes a condition the variables must satisfy is a constraint equation. (This is an equation, not an expression).
- If applicable, use the constraint equation to rewrite the objective function in terms of only one variable. Revisit the constraints.

Guidelines when Optimizing:

- Draw a picture and label it. Do not try to visualize in your head.
- Determine what the variables are
- Decide which quantity is to be optimized
- Write expression for the qty to be optimized: objective function
- If applicable, determine the constraints, incl. constraint equation
- If applicable, use the constraint equation to rewrite the objective function in terms of only one variable. Revisit the constraints.
- Determine the max and min values (if any) of the objective function
- Be sure to answer the question that is asked.

In Class Work

1. A rectangle has its base on the x-axis and its upper two vertices on the parabola $y=12-x^{2}$. What is the largest area the rectangle can have?
2. Find the point(s) on the parabola $y=x^{2}-3$ that is closest to the origin.

Hint: Rather than mimimizing the distance to the origin, you can minimize the square of the distance. This will make the algebra easier.

Solutions:

1. A rectangle has its base on the x-axis and its upper two vertices on the parabola $y=12-x^{2}$. What is the largest area the rectangle can have?

- Draw a picture:

To form a rectangle with both of its upper two vertices on the parabola, it must go from $-x$ to x for some value of x.

Solutions:

1. A rectangle has its base on the x-axis and its upper two vertices on the parabola $y=12-x^{2}$. What is the largest area the rectangle can have?

- Determine what the variables are: $A=$ area, $b=$ base, $h=$ height.
- Determine which quantity is to be optimized: Maximize area
- Objective Function: $A=b h$
- Determine the constraints:
- Upper vertices lie on the parabola
\Rightarrow rectangle symmetric about $x=0$
\Rightarrow Base is from $-x$ to x, so $b=2 x$.
- Upper 2 vertices on the parabola $\Rightarrow x$ is btw $2 x$-intercepts.

$$
\begin{aligned}
12-x^{2}=0 & \Rightarrow 12=x^{2} \\
\Rightarrow x= \pm \sqrt{12} & \Rightarrow x= \pm 2 \sqrt{3}
\end{aligned}
$$

- Height is determined by f at x, so $h=f(x)=12-x^{2}$.

Re-label picture:

Solutions:

1. A rectangle has its base on the x-axis and its upper two vertices on the parabola $y=12-x^{2}$. What is the largest area the rectangle can have?

- Rewrite the objective function in one variable:

$$
\begin{aligned}
A & =b h \\
A(x) & =(2 x)\left(12-x^{2}\right) \\
& =24 x-2 x^{3},
\end{aligned}
$$

$$
\text { with } 0 \leq x \leq 2 \sqrt{3}
$$

Objective: Maximize $A(x)$

Solutions:

1. A rectangle has its base on the x-axis and its upper two vertices on the parabola $y=12-x^{2}$. What is the largest area the rectangle can have?

- Determine the max and min values, if any

$$
\begin{gathered}
A(x)=24 x-2 x^{3}, \mathrm{w} / x \in[0,2 \sqrt{3}] \\
A^{\prime}(x)=24-6 x^{2}
\end{gathered}
$$

- A^{\prime} exists everywhere
- $A^{\prime}(x)=0 \Rightarrow 24=6 x^{2} \Rightarrow 4=$ $x^{2} \Rightarrow x= \pm 2$.

$[0,2 \sqrt{3}]$ closed \Rightarrow abs max $\&$ min values occur at $x=0,2$, or $2 \sqrt{3}$.

$$
A(0)=24(0)-2(0)^{3}=0, A(2)=24(2)-2(2)^{3}=32, A(2 \sqrt{3})=0
$$

Thus the abs max area is 32 and the abs minimum such area is 0 .

Solutions:

1. A rectangle has its base on the x-axis and its upper two vertices on the parabola $y=12-x^{2}$. What is the largest area the rectangle can have?

- Answer the question:

The largest area such a rectangle can have is 32 square units.

Solutions:

2. Find the point(s) on the parabola $y=x^{2}-3$ that is closest to the origin.
(Hint: Rather than mimimizing the distance to the origin, you can minimize the square of the distance. This will make the algebra easier.)

- Draw a picture

Solutions:

2. Find the point(s) on the parabola $y=x^{2}-3$ that is closest to the origin.
(Hint: Rather than mimimizing the distance to the origin, you can minimize the square of the distance. This will make the algebra easier.)

- Variables:

We have an unknown point, (x, y), and distance, $d=\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}}$.

- Quantity to be optimized: Minimize distance between a point and the origin
- Objective Function:

Distance from the origin $(0,0)$ to a point (x, y) : $d=\sqrt{x^{2}+y^{2}}$.
But it's easier to deal with the squaring the distance:
Objective Function: $D=d^{2}=x^{2}+y^{2}$, minimize D.

Solutions:

2. Find the point(s) on the parabola $y=x^{2}-3$ that is closest to the origin.
Objective Function: $D=d^{2}=x^{2}+y^{2}$, minimize D.

- Constraints:

The point lies on the parabola $y=$ $x^{2}-3$.

This puts some constraint on us, so our constraint equation is

$$
y=x^{2}-3
$$

There's no restriction on x, so we don't have endpoints.

- Rewrite Objective Function, using Constraints: Substituting the constraint $y=x^{2}-3$ into our objective function,

$$
D(x)=x^{2}+\left(x^{2}-3\right)^{2}
$$

Solutions:

2. Find the point(s) on the parabola $y=x^{2}-3$ that is closest to the origin.
Objective Function: $D=x^{2}+\left(x^{2}-3\right)^{2}=x^{4}-5 x^{2}+9$, minimize D.

- Find the max and min values (if any) of the objective $\mathbf{f n}$:
- Critical numbers:
$D^{\prime}(x)=4 x^{3}-10 x=2 x\left(2 x^{2}-5\right)$
$D^{\prime}(x)$ exists everywhere.
$D^{\prime}(x)=0 \Rightarrow x=0$ or $2 x^{2}-5=0 \Rightarrow x=0, x= \pm \sqrt{\frac{5}{2}}$
- Classify:

Use the 1st or 2nd derivative test
l'll use 2 nd deriv test, since finding $D^{\prime \prime}$ is easy enough.

$$
\begin{aligned}
D^{\prime}(x)=4 x^{3}-10 x \Rightarrow D^{\prime \prime}(x) & =12 x^{2}-10 \\
D^{\prime \prime}(0)=-10<0 \Longrightarrow D \frown \text { at } x & =0 \Rightarrow \text { local max } \\
D^{\prime \prime}\left(\pm \sqrt{\frac{5}{2}}\right)=20 \Longrightarrow D \smile \text { at } x & = \pm \sqrt{\frac{5}{2}} \Rightarrow \text { local min }
\end{aligned}
$$

Solutions:

2. Find the point(s) on the parabola $y=x^{2}-3$ that is closest to the origin.

- Answer the question:

There's a local max at $x=0$ (which is by no means the abs max) and local mins (which are the absolute mins) at $x= \pm \sqrt{5 / 2}$. Thus the points on the parabola that are closest to the origin are

$$
\left(-\sqrt{\frac{5}{2}},-\frac{1}{2}\right),\left(\sqrt{\frac{5}{2}},-\frac{1}{2}\right)
$$

