The Fundamental Theorem of Calculus

- FTC, First Form: Let f be continuous on an open interval / containing a. The function A_{f} defined by

$$
A_{f}(x)=\int_{a}^{x} f(t) d t
$$

is defined for all $x \in I$ and $\frac{d}{d x}\left(A_{f}(x)\right)=f(x)$. That is, A_{f} is an antiderivative of f.

- Consequence: If f is continous, then f has an antiderivative, A_{f}. This doesn't tell us how to find it, only that it exists.
- FTC, Second Form: Let f be continuous on $[a, b]$, and let F be any antiderivative of f. Then

$$
\int_{a}^{b} f(x) d x=F(b)-F(a)
$$

In Class Work

1. Evaluate the following integrals:
(a) $\int_{0}^{\pi / 2} \cos (x) d x$
(c) $\int_{1}^{2} \frac{3}{x}-\sec ^{2}(x) d x$
(b) $\int_{1}^{4} x^{3}-\frac{2}{x^{2}} d x$
(d) $\int_{0}^{1} x^{12} e^{x^{13}} d x$
2. Let $f(t)=2 t \cos \left(t^{2}\right)$ and $F(x)=\int_{1}^{x} f(t) d t$.
(a) Find the equation of the line tangent to $y=F(x)$ at $x=3$.
(b) Find a formula for $\frac{d}{d x}\left(F\left(x^{3}\right)\right)$.
3. Find the area of the region bounded by the graphs $y=x^{2}$ and $y=2 x+3$.

Solutions

$1(\mathrm{a}) \int_{0}^{\pi / 2} \cos (x) d x$ $\sin (x)$ is an antiderivative of $\cos (x)$, so from the FTC v2, we know

$$
\int_{0}^{\pi / 2} \cos (x) d x=\left.\sin (x)\right|_{0} ^{\pi / 2}=\sin (\pi / 2)-\sin (0)=1
$$

1(b) $\int_{1}^{4} x^{3}-\frac{2}{x^{2}} d x=\int_{1}^{4} x^{3}-2 x^{-2}$
$\frac{x^{4}}{4}-\frac{2 x^{-1}}{-1}$ is an antiderivative of $x^{3}-\frac{2}{x^{2}}$, so from the FTC v2, we know

$$
\int_{1}^{4} x^{3}-\frac{2}{x^{2}} d x=\left.\left(\frac{x^{4}}{4}+\frac{2}{x}\right)\right|_{1} ^{4}=\left(\frac{4^{4}}{4}+\frac{2}{4}\right)-\left(\frac{1}{4}+\frac{2}{1}\right)=62+\frac{1}{4}=\frac{249}{4}
$$

Solutions

1(c) $\int_{1}^{2} \frac{3}{x}-\sec ^{2}(x) d x$ $3 \ln (x)-\tan (x)$ is an antiderivative of $\frac{3}{x}-\sec ^{2}(x)$, so from the FTC v2, we know
$\int_{1}^{2} \frac{3}{x}-\sec ^{2}(x) d x=3 \ln (x)-\left.\tan (x)\right|_{1} ^{2}=3 \ln (2)-\tan (2)-3 \ln (1)+\tan (1)$

Solutions

$1(d) \int_{0}^{1} x^{12} e^{x^{13}} d x$

- Need to find: an antiderivative $F(x)$ of $x^{12} e^{x^{13}}$.
- $e^{x^{13}}$ is a composition, and x^{12} is (more or less) $\frac{d}{d x} x^{13}$, so this came from the chain rule.
- Chain rule: $[f(u)]^{\prime}=f^{\prime}(u) u^{\prime}$.
- If $f(u)=e^{u}, u=x^{13} \cdot u^{\prime}=13 x^{12}$, then $f^{\prime}(u) u^{\prime}=13 x^{12} e^{x^{13}}-$ not quite what we have.
- If $f(u)=\frac{1}{13} e^{u}, u=x^{13}, u^{\prime}=13 x^{12}$, then

$$
f^{\prime}(u) u^{\prime}=13 x^{12} \frac{1}{13} e^{x^{13}}=x^{12} e^{x^{13}}-\text { WHAT WE HAVE! }
$$

- $F(x)=\frac{1}{13} e^{x^{13}}$
- Using FTC v2,

$$
\int_{0}^{1} x^{12} e^{x^{13}} d x=\left.\frac{1}{13} e^{x^{13}}\right|_{0} ^{1}=\frac{1}{13} e^{1^{13}}-\frac{1}{13} e^{0^{13}}=\frac{1}{13}(e-1)
$$

Solutions

2. Let $f(t)=2 t \cos \left(t^{2}\right)$ and $F(x)=\int_{1}^{x} f(t) d t$.
(a) Find the equation of the line tangent to $y=F(x)$ at $x=3$.

Need to find: Slope of line and point on line

- Point on the tangent line: $(3, F(3))$

$$
F(3)=\int_{1}^{3} f(t) d t=\int_{1}^{3} 2 t \cos \left(t^{2}\right) d t
$$

Antiderivative of $2 t \cos \left(t^{2}\right)$:

- $\cos \left(t^{2}\right)$ is a composition, and $2 t$ is the derivative of t^{2}, so this came from the Chain Rule.
- $\frac{d f(u)}{d x}=f^{\prime}(u) u^{\prime}(t)$. If $f(u)=\sin (u)$ and $u(t)=t^{2}$, then
$f^{\prime}(u) u^{\prime}(t)=\cos (u) \cdot 2 t=2 t \cos \left(t^{2}\right)$ - what we have.
- Thus an antiderivative of $2 t \cos \left(t^{2}\right)$ is $\sin \left(t^{2}\right)$.

Thus

$$
F(3)=\left.\sin \left(t^{2}\right)\right|_{1} ^{3}=\sin (9)-\sin (1) \approx-0.43
$$

Point on the line: $(3,-0.43)$

Solutions

2. Let $f(t)=2 t \cos \left(t^{2}\right)$ and $F(x)=\int_{1}^{x} f(t) d t$.
(a) Find the equation of the line tangent to $y=F(x)$ at $x=3$.

Need to find: Slope of line and point on line

- Point on the tangent line: $(3,-0.43)$
- Slope of the tangent line: $F^{\prime}(3)$

To find $F^{\prime}(x)$, use FTC, v1:

$$
\frac{d}{d x}\left(\int_{a}^{x} f(t) d t\right)=f(x)
$$

so $F^{\prime}(x)=f(x)=2 x \cos \left(x^{2}\right)$, and thus

$$
F^{\prime}(3)=2(3) \cos (9)=6 \cos (9) \approx-5.47
$$

(b) Equation of the tangent line:

$$
\begin{aligned}
y-y_{0} & =m\left(x-x_{0}\right) \\
y-(\sin (9)-\sin (1)) & =6 \cos (9)(x-3) \\
y+0.43 & \approx-5.47(x-3)
\end{aligned}
$$

Solutions:

2. Let $f(t)=2 t \cos \left(t^{2}\right)$ and $F(x)=\int_{1}^{x} f(t) d t$.
(b) Find a formula for $\frac{d}{d x}\left(F\left(x^{3}\right)\right)$.

Let $G(x)=F\left(x^{3}\right)=F(u)$, where $u(x)=x^{3}$.
From the chain rule:

$$
G^{\prime}(x)=F^{\prime}(u) u^{\prime}(x)=F^{\prime}(u) \cdot 3 x^{2} .
$$

From the FTC, v1, $F^{\prime}(x)=f(x)=2 x \cos \left(x^{2}\right)$, so $F^{\prime}(u)=2 u \cos \left(u^{2}\right)=2 x^{3} \cos \left(x^{6}\right)$.
Therefore

$$
\frac{d}{d x}\left(F\left(x^{3}\right)\right)=\left[2 x^{3} \cos \left(x^{6}\right)\right] \cdot\left(3 x^{2}\right)=6 x^{5} \cos \left(x^{6}\right) .
$$

Note: In this particular case, because we are able to antidifferentiate $2 x \cos \left(x^{2}\right)$, we could have found $F\left(x^{3}\right)$ and then differentiated, but (once you get used to it) this is faster.

Solutions:

3. Find the area of the region bounded by the graphs $y=x^{2}$ and $y=2 x+3$.

The area bounded by the two graphs is what we get when we start with the area under the line $y=2 x+3$, and take away the area under the parabola $y=x^{2}$.

$$
\begin{aligned}
A & =\int_{\text {left int. pt }}^{\text {right int. pt }} 2 x+3 d x-\int_{\text {left int. pt }}^{\text {right int. pt }} x^{2} d x \\
& =\int_{\text {left int. pt }}^{\text {right int. pt }} 2 x+3-x^{2} d x
\end{aligned}
$$

Need to find the left and right intersection points:
$x^{2}=2 x+3 \Rightarrow x^{2}-2 x-3=0 \Rightarrow(x-3)(x+1)=0 \Rightarrow x=3$ or $x=-1$
Thus $A=\int_{-1}^{3} 2 x+3-x^{2} d x$

Solutions:

3. Find the area of the region bounded by the graphs $y=x^{2}$ and $y=2 x+3$.

$$
\begin{aligned}
& A=\int_{-1}^{3} 2 x+3-x^{2} d x \\
A= & {\left.\left[x^{2}+3 x-\frac{1}{3} x^{3}\right]\right|_{-1} ^{3} } \\
= & {\left[(3)^{2}+3(3)-\frac{1}{3}(3)^{3}\right]-\left[(-1)^{2}+3(-1)-\frac{1}{3}(-1)^{3}\right] } \\
= & {[9+9-9]-\left[1-3-\frac{1}{3}(-1)\right] } \\
= & 9-\left[-2+\frac{1}{3}\right] \\
= & 9-(-5 / 3) \\
= & 32 / 3
\end{aligned}
$$

