The Fundamental Theorem of Calculus

e FTC, First Form: Let f be continuous on an open interval /
containing a. The function Ar defined by

Af(x) = /X f(t) dt

d
is defined for all x € [ and E(Af(x)) = f(x). That is, Ar is an
antiderivative of f.

e Consequence: If f is continous, then f has an antiderivative, Ar. This
doesn’t tell us how to find it, only that it exists.

e FTC, Second Form: Let f be continuous on [a, b], and let F be any
antiderivative of f. Then

b
/ f(x) dx = F(b) — F(a)
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In Class Work

1. Evaluate the following integrals:

/2 2

(a) /0 cos(x) dx (c) /1 % — sec®(x) dx
4 2 1o

(b)/1 x3—; dx (d)/ dx

2. Let f(t) = 2t cos(t?) and F(x / f(t) dt.

(a) Find the equation of the line tangent to y = F(x) at x = 3.
d
(b) Find a formula for o (F(P)).

3. Find the area of the region bounded by the graphs y = x? and
y =2x+ 3.
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Solutions

/2
1(a) / cos(x) dx
0
sin(x) is an antiderivative of cos(x), so from the FTC v2, we know

w/2

/2
/0 cos(x) dx = sin(x) = sin(7/2) —sin(0) = 1.

4 2 4
1(b) / x3——2 dx:/ x3 —2x72
1 X 1

0

%4 - 2f11 is an antiderivative of x3 — % so from the FTC v2, we
know
4 4 4 4
2 X 2 4 2 1 2 1 249
3
/lx =t )1 (Z+-G+7 t1T
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Solutions

2
1(c) /1 3. sec?(x) dx

X

3In(x) — tan(x) is an antiderivative of 2 — sec?(x), so from the FTC
v2, we know

23 2
/1 = —sec?(x) dx = 3In(x)—tan(x)| = 3In(2)—tan(2)—3In(1)+tan(1)

X 1
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Solutions

1
1(d) / x2e dx
0

» Need to find: an antiderivative F(x) of x}2e~

12 -

13, . d 13 .
> & is a composition, and x is (more or less) 25 150 this came
Ix

from the chain rule.
> Chain rule: [f(u)] = f( Yo’
> Iff(u)=e", u=x" u =
what we have.
> If f(u) = Se, u=x", v =13x", then
F(u)u' = 13x12ﬁe ’ = x2°_WHAT WE HAVE!
> F(x)= L&
» Using FTC v2,

13x'2, then f'(u)u’ = 13x™%e " _ not quite

1

L 12 513 d 1 s 1 s 1 o8 _ ( 1)
X e X — —€ = —€ = —(3 @ = 5
0 13 0 13 13 ~ 13
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Solutions

2 Let £(t) = 2t cos(t2) and F(x) = / F(t) dt.
1

(a) Find the equation of the line tangent to y = F(x) at x = 3.
Need to find: Slope of line and point on line

> Point on the tangent line: (3, F(3))

= /13 f(t) dt = /13 2t cos(t?) dt.

Antiderivative of 2t cos(t®):

e cos(t?) is a composition, and 2t is the derivative of t?, so this came
from the Chain Rule.

D = £ (u)u/(t). If f(u) = sin(u) and u(t) = t2, then
f'(u)u/(t) = cos(u) - 2t = 2t cos(t?) - what we have.

e Thus an antiderivative of 2t cos(t?) is sin(t?).

Thus

F(3) = sin(t%) ’ =sin(9) —sin(1) ~ —0.43.

Point on the line: (3,—0.43)
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Solutions
2. Let £(t) = 2t cos(t2) and F(x) :/ F(t) dt.
1

(a) Find the equation of the line tangent to y = F(x) at x = 3.
Need to find: Slope of line and point on line
> Point on the tangent line: (3,—0.43)
> Slope of the tangent line: F'(3)
To find F'(x), use FTC, v1:

%(/: f(t) dt) = f(x),

so F'(x) = f(x) = 2x cos(x?), and thus
F'(3) = 2(3) cos(9) = 6 cos(9) ~ —5.47.

(b) Equation of the tangent line:

y=yo = m(x—x)
y — (sin(9) —sin(1)) = 6cos(9)(x —3)
y+043 ~ —547(x—3)
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Solutions:
2 Let £(t) = 2t cos(t2) and F(x) :/ F(t) dt.
1

(b) Find a formula for dix (F(x*)).

Let G(x) = F(x3) = F(u), where u(x) = x3.
From the chain rule:

G'(x) = F'(u)u'(x) = F'(u) - 3x*,
From the FTC, v1, F’(x) = f(x) = 2x cos(x?), so

F'(u) = 2ucos(u?) = 2x3 cos(x").
Therefore

d 3 3 6 2 5 6
E(F(X )) = [2x7 cos(x°)] - (3x“) = 6x> cos(x°).

Note: In this particular case, because we are able to antidifferentiate
2x cos(x?), we could have found F(x3) and then differentiated, but
(once you get used to it) this is faster.
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Solutions:

3. Find the area of the region bounded by the graphs y = x? and
y=2x+3.

The area bounded by the two graphs is what we
get when we start with the area under the line
y = 2x + 3, and take away the area under the

parabola y = x?.

1 right int. pt right int. pt
A = / 2x+3dx—/ x? dx
| |

eft int. pt eft int. pt
’ right int. pt
= / 2x + 3 — x% dx
left int. pt

Need to find the left and right intersection points:

x* =2x43 = x*-2x-3=0= (x-3)(x+1) =0=x=3 or x = —1
3
ThusA—/ 2x 4+ 3 — x? dx
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Solutions:

3. Find the area of the region bounded by the graphs y = x? and
y=2x+3.

Math 101-Calculus 1

3

A—/ 2x +3 — x? dx
-1

3

= [x2 I B = %xﬂ

-1
= [@2+30) - 53 - [(-1?+3(=1) - 3 (-1}

= [0+9-9-[1-3-3(-1)]

= 9—[—2+%]
= 9-(-5/3)
= 32/3
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