The Fundamental Theorem of Calculus

- FTC, First Form: Let f be continuous on an open interval / containing a. The function A_{f} defined by

$$
A_{f}(x)=\int_{a}^{x} f(t) d t
$$

is defined for all $x \in I$ and $\frac{d}{d x}\left(A_{f}(x)\right)=f(x)$. That is, A_{f} is an antiderivative of f.

- Consequence: If f is continous, then f has an antiderivative, A_{f}. This doesn't tell us how to find it, only that it exists.
- FTC, Second Form: Let f be continuous on $[a, b]$, and let F be any antiderivative of f. Then

$$
\int_{a}^{b} f(x) d x=F(b)-F(a)
$$

Substitution

1. Observe: have a product; one factor is a composition. Plan: replace all terms involving x and $d x w /$ equivalent terms involving u and $d u$ to create a simpler (less cluttered) integrand.
2. Choose u to be the inside of the composition. Use u to find $d u$.
3. Substitute in u and $d u$.

Note: $d u$ is not exactly a variable. In an integral, can only have $d u$.
Can't have $(d u)^{2}, \frac{1}{d u}, \sqrt{d u}$.
If you are able to completely eliminate all mention of x and $d x$, while still only having one $d u$, then your substitution was successful.

Whether it was useful remains to be seen.
4. Antidifferentiate your simpler integrand in terms of u. If you are able to do so, your successful substitution was also useful!
5. Replace u with its equivalent expression in terms of x.

In Class Work

Use substitution to find the following indefinite integrals, and check your results.

1. $\int \cos (x) e^{\sin (x)} d x \quad(u=\sin (x))$
2. $\int x \sin \left(\pi x^{2}\right) d x \quad\left(u=\pi x^{2}\right)$
3. $\int \frac{1}{\sqrt{1-x}} d x \quad(u=1-x)$

Solutions:

1. $\int \cos (x) e^{\sin (x)} d x \quad(u=\sin (x))$

- Integrand= product; one factor =composition. Came from chain rule?
- Choose u to be the inside function in the composition (if there is one). Composition: $e^{\sin (x)}$, Inside function: $u=\sin (x)$.
- Find $d u$:

Since $u=\sin (x)$, then $\frac{d u}{d x}=\cos (x)$, so $d u=\cos (x) d x$.

- Substitute in u and $d u$, without changing integral

$$
\int \cos (x) e^{\sin (x)} d x=\int e^{u} d u
$$

- Antidifferentiate

$$
\int \cos (x) e^{\sin (x)} d x=\int e^{u} d u=e^{u}+C
$$

- Substitute back in for x

$$
\int \cos (x) e^{\sin (x)} d x=e^{\sin (x)}+C
$$

Solutions:

2. $\int x \sin \left(\pi x^{2}\right) d x \quad\left(u=\pi x^{2}\right)$

- Integrand= product; one factor =composition. Came from chain rule?
- Choose u to be the inside function in the composition (if there is one). Composition: $\sin \left(\pi x^{2}\right)$, Inside function: $u=\pi x^{2}$.
- Find du:

Since $u=\pi x^{2}$, then $\frac{d u}{d x}=2 \pi x$, so $d u=2 \pi d x$.

- Substitute in u and du, without changing integral

$$
\int x \sin \left(\pi x^{2}\right) d x=\frac{1}{2 \pi} \int \sin \left(\pi x^{2}\right)(2 \pi x d x)=\frac{1}{2 \pi} \int \sin (u) d u
$$

- Antidifferentiate

$$
\int x \sin \left(\pi x^{2}\right) d x=\frac{1}{2 \pi} \int \sin (u) d u=\frac{1}{2 \pi}(-\cos (u))+C
$$

- Substitute back in for x

$$
\int x \sin \left(\pi x^{2}\right) d x=-\frac{1}{2 \pi} \cos \left(\pi x^{2}\right)+C
$$

Solutions:

3. $\int \frac{1}{\sqrt{1-x}} d x \quad(u=1-x)$

- Integrand= product; one factor =composition. Came from chain rule?
- Choose u to be the inside function in the composition (if there is one). Composition: $\sqrt{1-x}=(1-x)^{1 / 2}$, Inside function: $u=1-x$.
- Find $d u$:

Since $u=1-x$, then $\frac{d u}{d x}=-1$, so $d u=-1 d x$.

- Substitute in u and $d u$, without changing integral

$$
\int \frac{1}{\sqrt{1-x}} d x=-1 \int(1-x)^{-1 / 2}(-1 d x)=-1 \int u^{-1 / 2} d u
$$

- Antidifferentiate

$$
\int \frac{1}{\sqrt{1-x}} d x=-1 \int u^{-1 / 2} d u=(-1)(2) u^{1 / 2}+C
$$

- Substitute back in for x

$$
\int \frac{1}{\sqrt{1-x}} d x=-2 \sqrt{1-x}+C
$$

