Reminder: what are polynomials?

- Examples:
- $3 x^{7}-42 x^{6}+7 x^{3}-x+3$
- $42(x-3)^{3}+7(x-2)^{2}-4$
- Any expression with just addition, subtraction, and multiplication, and only non-negative whole-number powers of x.
- Coefficients: The constants in front of the x 's, or the constant at the end

Arbitrary polynomials:

- We write an arbitrary polynomial with basepoint x_{0} as follows:

$$
P_{n}(x)=a_{0}+a_{1}\left(x-x_{0}\right)+a_{2}\left(x-x_{0}\right)^{2}+\cdots+a_{n}\left(x-x_{0}\right)^{n}
$$

where $a_{0}, a_{1}, a_{2}, \ldots$ are coefficients.

- The a_{i} are coefficients, so they are constant.
- x_{0} is a fixed basepoint, so it is constant also.
- The only variable is x

Arbitrary polynomials

$$
P_{n}(x)=a_{0}+a_{1}\left(x-x_{0}\right)+a_{2}\left(x-x_{0}\right)^{2}+\cdots+a_{n}\left(x-x_{0}\right)^{n}
$$

Examples:

- $P_{3}(x)=1-2(x-7)+\frac{1}{2}(x-7)^{2}-\pi(x-7)^{3}$
- Basepoint: $x_{0}=7$
- Degree: $n=3$
- Coefficients: $a_{0}=1, a_{1}=-2, a_{2}=\frac{1}{2}$, and $a_{3}=\pi$
- $P_{4}(x)=(x-\pi)+7(x-\pi)^{3}+10(x-\pi)^{4}$
- Basepoint: $x_{0}=\pi$
- Degree: $n=4$
- Coefficients: $a_{0}=0, a_{1}=1, a_{2}=0, a_{3}=7, a_{4}=10$.

Notice that $P_{3}(7)=1=a_{0}$, and $P_{4}(\pi)=0=a_{0}$. This is part of why we call x_{0} the basepoint - it's easiest to calculate the polynomial there.

Approximating complicated fns with simpler ones:

Using the tangent to approximate $\cos (\mathrm{x})$:
At left is the graph of $\cos (x)$ (in
 black) and its tangent line at $x=0$ (in red).

Very near to the point of tangency, the tangent line gives a good approximation to the function.

Why?

Approximating complicated fns with simpler ones:

Using the tangent to approximate $\cos (\mathrm{x})$:
At left is the graph of $\cos (x)$ (in
 black) and its tangent line at $x=0$ (in red).

Very near to the point of tangency, the tangent line gives a good approximation to the function.

Why? Because they have the same slope and y-value at $x=0$.

In other words, because both the functions and their first derivatives match $x=0$.

Approximating complicated fns with simpler ones:

What if we make more derivatives agree?

At left is the graph of $\cos (x)$ (in black), its tangent line at $x=0$ (in red), and a new polynomial P_{2} (in blue), created so that at $x=0$, $P_{2}(x)$ and $\cos (x)$ not only have the same y-value and the same slope, as in the last slide, but also the same concavity.
P_{2} gives such a good approximation of $\cos (x)$ over this small interval, we can't even see the difference.

Why?

Approximating complicated fns with simpler ones:

What if we make more derivatives agree?

Approximating complicated fns with simpler ones:

 What if we make more derivatives agree?But if we look over a larger interval, we see that despite the y-value, slope, and concavity all matching $\cos (x)$ at $x=0$, $P_{2}(x)$ doesn't do as good a job of approximating $\cos (x)$ if we look farther away from $x=0$.
π How can we get a still better approximation?

Approximating complicated fns with simpler ones:

 What if we make more derivatives agree?But if we look over a larger interval, we see that despite the y-value, slope, and concavity
 all matching $\cos (x)$ at $x=0$, $P_{2}(x)$ doesn't do as good a job of approximating $\cos (x)$ if we look farther away from $x=0$.

How can we get a still better approximation?

Try matching still more derivatives at $x=0$

Approximating complicated fns with simpler ones:

 What if we make more derivatives agree?

The more derivatives a polynomial and our function agree on at that one point, $x=0$, the better job that polynomial does at approximating the function! (Our original function, $\cos (x)$, is in black).

Recall:

Let $P_{n}(x)=a_{0}+a_{1}\left(x-x_{0}\right)+a_{2}\left(x-x_{0}\right)^{2}+\cdots+a_{n}\left(x-x_{0}\right)^{n}$ be an arbitrary polynomial based at $x=x_{0}$.

- Notation: For any integer $n>0, n(n-1)(n-2) \cdots 3 \cdot 2 \cdot 1=n$!. Also $0!=1$.
Examples: $4!=4 \cdot 3 \cdot 2,6!=6 \cdot 5 \cdot 4 \cdot 3 \cdot 2$
- What are the derivatives of $P_{n}(x)$ at $x=x_{0}$?
- $P_{n}^{0}\left(x_{0}\right)=a_{0}+a_{1}\left(x_{0}-x_{0}\right)+a_{2}\left(x_{0}-x_{0}\right)^{2}+\cdots+a_{n}\left(x_{0}-x_{0}\right)^{n}=a_{0}$
- $P_{n}^{\prime}\left(x_{0}\right)=a_{1}+2 a_{2}\left(x_{0}-x_{0}\right)+3 a_{3}\left(x_{0}-x_{0}\right)^{2}+\cdots+n a_{n}\left(x_{0}-x_{0}\right)^{n-1}=a_{1}$
- $P_{n}^{\prime \prime}\left(x_{0}\right)=2 a_{2}+3 \cdot 2 a_{3}\left(x_{0}-x_{0}\right)+\cdots+n(n-1)\left(x_{0}-x_{0}\right)^{n-2}=2 a_{2}$
- $P_{n}^{\prime \prime \prime}\left(x_{0}\right)=3!a_{3}+4 \cdot 3 \cdot 2\left(x_{0}-x_{0}\right)+\cdots+n(n-1)(n-2)\left(x_{0}-x_{0}\right)^{n-3}=3!a_{3}$
- $P_{n}^{(n)}\left(x_{0}\right)=n!a_{n}$
- In general, for the k th derivative, $P_{n}^{(k)}\left(x_{0}\right)=k!a_{k}$.

In Class Work

Let $f(x)=\sin (x)$ and
let $P_{k}(x)$ be the k th order Taylor polynomial for $f(x)$ at $x_{0}=0$.

1. Find $P_{1}(x), P_{2}(x), P_{3}(x), P_{4}(x)$ and $P_{5}(x)$.
2. If you have a graphing calculator, verify your answer by graphing the polynomials and $f(x)$ on the same set of axes.
3. Use $P_{5}(x)$ to find an approximation for $\sin (3)$.

Will this be larger or smaller than the actual value of $\sin (3)$?
4. Now find $P_{19}(x)$.

Hint: You don't actually need to take all of the derivatives.

Solutions

Let $f(x)=\sin (x)$ and
let $P_{k}(x)$ be the k th order Taylor polynomial for $f(x)$ at $x_{0}=0$.
Taylor polynomials: $P_{k}(x)=a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{k} x^{k}, \quad a_{k}=\frac{f^{(k)}(0)}{k!}$. 1. Find $P_{1}(x), P_{2}(x), P_{3}(x), P_{4}(x)$ and $P_{5}(x)$.

			$P_{1}(x)$	$=0+1 x=x$	
k	$f^{(k)}(x)$	$f^{(k)}(0)$	a_{k}	$P_{2}(x)$	$=0+1 x+0 x^{2}=x$
0	$\sin (x)$	0	$\frac{0}{0!}=\frac{0}{1}=0$	$P_{3}(x)$	$=0+1 x+0 x^{2}-x^{3} / 3!$
1	$\cos (x)$	1	$\frac{1}{1!}=1$		
2	$-\sin (x)$	0	$\frac{0}{2!}=0$	$P_{4}(x)$	$=0+x^{3} / 3!$
3	$-\cos (x)$	-1	$-\frac{1}{3!}$		
4	$\sin (x)$	0	0		$=x-x^{3} / 3!$
5	$\cos (x)$	1	$\frac{1}{5!}$	$P_{5}(x)$	$=1 x-x^{3} / 3!+0 x^{4}+x^{5} / 5!$
					$=x-x^{3} / 3!+x^{5} / 5!$

Solutions

Let $f(x)=\sin (x)$ and
let $P_{k}(x)$ be the k th order Taylor polynomial for $f(x)$ at $x_{0}=0$.
2. Verify your answer by graphing the polynomials and $f(x)$ on the same set of axes.

Solutions

Let $f(x)=\sin (x)$ and let $P_{k}(x)$ be the k th order Taylor polynomial for $f(x)$ at $x_{0}=0$.
3. Use $P_{5}(x)$ to find an approximation for $\sin (3)$.

Will this be larger or smaller than the actual value of $\sin (3)$?

$$
\sin (3) \approx P_{5}(3)=3-\frac{3^{3}}{3!}+\frac{3^{5}}{5!} \approx .525 .
$$

Solutions

Let $f(x)=\sin (x)$ and
let $P_{k}(x)$ be the k th order Taylor polynomial for $f(x)$ at $x_{0}=0$.
4. Now find $P_{19}(x)$.

Hint: You don't actually need to take all of the derivatives.
It looks to me like all the even derivatives are going to be 0 , and the odd ones will be ± 1, so we'll have

$$
P_{19}(x)=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\frac{x^{9}}{9!}-\frac{x^{11}}{11!}+\frac{x^{13}}{13!}-\frac{x^{15}}{15!}+\frac{x^{17}}{17!}-\frac{x^{19}}{19!}
$$

