Recall:

- Suppose $f(x)$ is a function that seems impossible to evaluate exactly at most points (like $\cos (x), \sin (x), e^{x}, \ln (x)$, for instance).
- But suppose we can evaluate $f(x)$, and all its derivatives, at the point x_{0}.
- Then we can create a Taylor polynomial for $f(x)$ based at $x=x_{0}$ to approximate values of $f(x)$ near $x=x_{0}$.
- The formula for the nth degree Taylor polynomial for $f(x)$ based at $x=x_{0}$ is:

$$
P_{n}(x)=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+\frac{f^{\prime \prime}\left(x_{0}\right)}{2}\left(x-x_{0}\right)^{2}+\cdots+\frac{f^{(n)}\left(x_{0}\right)}{n!}\left(x-x_{0}\right)^{n}
$$

$P_{0}(x), P_{2}(x), P_{4}(x)$ and $P_{6}(x)$ for $\cos (x)$ based at $x_{0}=0$

In Class Work

Let $f(x)=\sin (x)$ and
let $P_{k}(x)$ be the k th order Taylor polynomial for $f(x)$ at $x_{0}=0$.

1. Find $P_{1}(x), P_{2}(x), P_{3}(x), P_{4}(x)$ and $P_{5}(x)$.
2. If you have a graphing calculator, verify your answer by graphing the polynomials and $f(x)$ on the same set of axes.
3. Use $P_{5}(x)$ to find an approximation for $\sin (3)$.
4. Now find $P_{19}(x)$.

Hint: You don't actually need to take all of the derivatives. Look for patterns

Solutions

Let $f(x)=\sin (x)$ and
let $P_{k}(x)$ be the k th order Taylor polynomial for $f(x)$ at $x_{0}=0$.
Taylor polynomials: $P_{k}(x)=a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{k} x^{k}, \quad a_{k}=\frac{f^{(k)}(0)}{k!}$. 1. Find $P_{1}(x), P_{2}(x), P_{3}(x), P_{4}(x)$ and $P_{5}(x)$.

k	$f^{(k)}(x)$	$f^{(k)}(0)$	a_{k}
0	$\sin (x)$	0	$\frac{0}{0!}=\frac{0}{1}=0$
1	$\cos (x)$	1	$\frac{1}{1!}=1$
2	$-\sin (x)$	0	$\frac{0}{2!}=0$
3	$-\cos (x)$	-1	$-\frac{1}{3!}$
4	$\sin (x)$	0	0
5	$\cos (x)$	1	$\frac{1}{5!}$

$$
\begin{aligned}
P_{1}(x) & =0+1 x=x \\
P_{2}(x) & =0+1 x+0 x^{2}=x \\
P_{3}(x) & =0+1 x+0 x^{2}-x^{3} / 3! \\
& =x-x^{3} / 3! \\
P_{4}(x) & =0+1 x+0 x^{2}-x^{3} / 3!+0 x^{4} \\
& =x-x^{3} / 3! \\
P_{5}(x) & =1 x-x^{3} / 3!+0 x^{4}+x^{5} / 5! \\
& =x-x^{3} / 3!+x^{5} / 5!
\end{aligned}
$$

Solutions

Let $f(x)=\sin (x)$ and
let $P_{k}(x)$ be the k th order Taylor polynomial for $f(x)$ at $x_{0}=0$.
2. Verify your answer by graphing the polynomials and $f(x)$ on the same set of axes.

Solutions

Let $f(x)=\sin (x)$ and let $P_{k}(x)$ be the k th order Taylor polynomial for $f(x)$ at $x_{0}=0$.
3. Use $P_{5}(x)$ to find an approximation for $\sin (3)$.

Will this be larger or smaller than the actual value of $\sin (3)$?

$$
\sin (3) \approx P_{5}(3)=3-\frac{3^{3}}{3!}+\frac{3^{5}}{5!} \approx .525 .
$$

Solutions

Let $f(x)=\sin (x)$ and
let $P_{k}(x)$ be the k th order Taylor polynomial for $f(x)$ at $x_{0}=0$.
4. Now find $P_{19}(x)$.

Hint: You don't actually need to take all of the derivatives.
Because the derivatives cycle between four options, all the even derivatives are going to be 0 , and the odd ones will be alternate between 1 and -1 , so we'll have

$$
P_{19}(x)=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\frac{x^{9}}{9!}-\frac{x^{11}}{11!}+\frac{x^{13}}{13!}-\frac{x^{15}}{15!}+\frac{x^{17}}{17!}-\frac{x^{19}}{19!}
$$

