Types of Functions We Can't Yet Differentiate

- $f(x)=\left(x^{6}-14 x^{5}+27 x^{-3}-13\right)\left(101 x^{-1}+14 x^{6}+13-42 \sqrt{x}\right)$
- $g(x)=\frac{x^{7}-\sqrt{x}}{14 x^{2}+12}$
- $h(x)=\left(x^{2}+13 x-\frac{2}{x}\right)^{1 / 3}$
- $j(x)=\cos \left(x^{2}\right)$
- $k(x)=\sin \left(e^{14 x}\right)$
- $m(x)=\ln (\sqrt{x}-14)$

What IS e?

What IS e?

- Recall: The graph of b^{x} passes through the point $(0,1)$ for all b, since $b^{0}=1$.
- The larger b is, the steeper the slope at $(0,1)$ is.

What IS e?

- Recall: The graph of b^{x} passes through the point $(0,1)$ for all b, since $b^{0}=1$.
- The larger b is, the steeper the slope at $(0,1)$ is.
- If $b \geq 3$, the slope of b^{x} at $(0,1)$ is larger than 1 ; if $b \leq 2$, the slope of b^{\times}at $(0,1)$ is less than 1 .

What IS e?

- Recall: The graph of b^{x} passes through the point $(0,1)$ for all b, since $b^{0}=1$.
- The larger b is, the steeper the slope at $(0,1)$ is.
- If $b \geq 3$, the slope of b^{x} at $(0,1)$ is larger than 1 ; if $b \leq 2$, the slope of b^{x} at $(0,1)$ is less than 1 .
- There is some number b between 2 and 3 for which b^{\times}has slope 1 at $(0,1)$.

For what b is slope of b^{x} at $x=0$ equal to 1 ?

That is, for what b is $y=x+1$ the line tangent to b^{x} at $(0,1)$?

For what b is slope of b^{x} at $x=0$ equal to 1 ?

That is, for what b is $y=x+1$ the line tangent to b^{x} at $(0,1)$?

For what b is slope of b^{x} at $x=0$ equal to 1 ?

That is, for what b is $y=x+1$ the line tangent to b^{x} at $(0,1)$?

For what b is slope of b^{x} at $x=0$ equal to 1 ?

That is, for what b is $y=x+1$ the line tangent to b^{x} at $(0,1)$?

For what b is slope of b^{x} at $x=0$ equal to 1 ?

That is, for what b is $y=x+1$ the line tangent to b^{x} at $(0,1)$?

For what b is slope of b^{x} at $x=0$ equal to 1 ?

That is, for what b is $y=x+1$ the line tangent to b^{x} at $(0,1)$?
Zoom in!

For what b is slope of b^{x} at $x=0$ equal to 1 ?

That is, for what b is $y=x+1$ the line tangent to b^{x} at $(0,1)$? Zoom in again!

For what b is slope of b^{x} at $x=0$ equal to 1 ?

That is, for what b is $y=x+1$ the line tangent to b^{x} at $(0,1)$? And zoom in one more time!

Just the right value of b :

$2.71828182845904523536028747135266249775724709369995957496697 \ldots$.

Is $\frac{d}{d x}\left(e^{x}\right)=x e^{x-1}$?
Compare the graphs of e^{x} and $x e^{x-1}$:

In Class Work

For each function, find its derivative:

1. $f(x)=5 e^{x}-7 x^{e}-6 \ln (x)+\ln (2)$
2. $f(x)=\left(3^{x}\right)\left(\log _{5}(x)\right)$
3. $f(x)=e^{\sin (x)}$
4. $f(x)=\ln (5 x)$
5. $f(x)=\ln (\tan (x))+\cos \left(x^{2}\right)$
6. $f(x)=\frac{7+e^{3+4 x}}{8-\ln (3 x)}$
