Types of Functions We Can't Yet Differentiate

$$f(x) = (x^6 - 14x^5 + 27x^{-3} - 13)(101x^{-1} + 14x^6 + 13 - 42\sqrt{x})$$

$$g(x) = \frac{x^7 - \sqrt{x}}{14x^2 + 12}$$

$$h(x) = \left(x^2 + 13x - \frac{2}{x}\right)^{1/3}$$

$$\rightarrow$$
 $j(x) = \cos(x^2)$

$$k(x) = \sin(e^{14x})$$

$$m(x) = \ln(\sqrt{x} - 14)$$

▶ Recall: The graph of b^x passes through the point (0,1) for all b, since b⁰ = 1.

- ▶ Recall: The graph of b^x passes through the point (0,1) for all b, since b⁰ = 1.
- ► The larger *b* is, the steeper the slope at (0, 1) is.

2 / 6

- ▶ Recall: The graph of b^x passes through the point (0,1) for all b, since b⁰ = 1.
- ▶ The larger b is, the steeper the slope at (0,1) is.
- If $b \ge 3$, the slope of b^x at (0,1) is larger than 1; if $b \le 2$, the slope of b^x at (0,1) is less than 1.

2 / 6

- Recall: The graph of b^x passes through the point (0,1) for all b, since b⁰ = 1.
- ▶ The larger b is, the steeper the slope at (0,1) is.
- If $b \ge 3$, the slope of b^x at (0,1) is larger than 1; if $b \le 2$, the slope of b^x at (0,1) is less than 1.
- ► There is some number b between 2 and 3 for which b[×] has slope 1 at (0,1).

That is, for what b is y = x + 1 the line tangent to b^x at (0,1)? Zoom in!

3^x

y=x+1

That is, for what b is y = x + 1 the line tangent to b^x at (0,1)? Zoom in again!

That is, for what b is y = x + 1 the line tangent to b^x at (0,1)? And zoom in one more time!

Just the right value of b:

2.71828182845904523536028747135266249775724709369995957496697....

Is $\frac{d}{dx}(e^x) = xe^{x-1}$?

Compare the graphs of e^x and xe^{x-1} :

 e^x is always increasing, so $\frac{d}{dx}(e^x)$ should be always positive, but xe^{x-1} is negative for all

 xe^{x-1} is **not** the derivative of e^x .

In Class Work

For each function, find its derivative:

1.
$$f(x) = 5e^x - 7x^e - 6\ln(x) + \ln(2)$$

2.
$$f(x) = (3^x) (\log_5(x))$$

3.
$$f(x) = e^{\sin(x)}$$

4.
$$f(x) = \ln(5x)$$

5.
$$f(x) = \ln(\tan(x)) + \cos(x^2)$$

6.
$$f(x) = \frac{7 + e^{3+4x}}{8 - \ln(3x)}$$