Recall:

- Rolle's Theorem: Let f be continuous on $[a, b]$ and differentiable on (a, b), and let $f(a)=f(b)$. Then there exists some number $c \in(a, b)$ such that $f^{\prime}(c)=0$.
That is, there exists some point on the graph of f between $(a, f(a))$ and ($b, f(b)$) where the tangent line is horizontal.
- The Mean Value Theorem: Let f be continuous on $[a, b]$ and differentiable on (a, b). Then there exists some number $c \in(a, b)$ such that

$$
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}
$$

That is, there exists some point on the graph of f between $(a, f(a))$ and $(b, f(b))$ where the tangent line is parallel to the line connecting $(a, f(a))$ to $(b, f(b))$.

Examples of Indeterminate Form

1. $\lim _{x \rightarrow \infty} \frac{e^{x}}{4 x}$
2. $\lim _{x \rightarrow 0} \frac{\sin (3 x)}{2 x}$
3. $\lim _{t \rightarrow \infty} t e^{-t}$

Both the top and bottom blow up
Both go to 0
One goes to ∞, the other to 0

Examples of Indeterminate Form

1. $\lim _{x \rightarrow \infty} \frac{e^{x}}{4 x}$
2. $\lim _{x \rightarrow 0} \frac{\sin (3 x)}{2 x}$
3. $\lim _{t \rightarrow \infty} t e^{-t}$

Both the top and bottom blow up
Both go to 0
One goes to ∞, the other to 0

In each case, there are two conflicting tendencies.

1. If the bottom $\rightarrow \infty$, while the top doesn't, quotient $\rightarrow 0$; if the top $\rightarrow \infty$ while the bottom doesn't, quotient $\rightarrow \pm \infty$. In this case, how fast is the top growing, compared to the bottom?

Examples of Indeterminate Form

1. $\lim _{x \rightarrow \infty} \frac{e^{x}}{4 x}$
2. $\lim _{x \rightarrow 0} \frac{\sin (3 x)}{2 x}$
3. $\lim _{t \rightarrow \infty} t e^{-t}$

Both the top and bottom blow up
Both go to 0
One goes to ∞, the other to 0

In each case, there are two conflicting tendencies.

1. If the bottom $\rightarrow \infty$, while the top doesn't, quotient $\rightarrow 0$; if the top $\rightarrow \infty$ while the bottom doesn't, quotient $\rightarrow \pm \infty$. In this case, how fast is the top growing, compared to the bottom?
2. If the top $\rightarrow 0$ and the bottom doesn't, quotient $\rightarrow 0$; if the bottom $\rightarrow 0$ and the top doesn't; quotient's limit dn.e. In this case, how fast is the top approaching 0 , compared to the bottom?

Examples of Indeterminate Form

1. $\lim _{x \rightarrow \infty} \frac{e^{x}}{4 x}$
2. $\lim _{x \rightarrow 0} \frac{\sin (3 x)}{2 x}$
3. $\lim _{t \rightarrow \infty} t e^{-t}$

Both the top and bottom blow up
Both go to 0
One goes to ∞, the other to 0

In each case, there are two conflicting tendencies.

1. If the bottom $\rightarrow \infty$, while the top doesn't, quotient $\rightarrow 0$; if the top $\rightarrow \infty$ while the bottom doesn't, quotient $\rightarrow \pm \infty$. In this case, how fast is the top growing, compared to the bottom?
2. If the top $\rightarrow 0$ and the bottom doesn't, quotient $\rightarrow 0$; if the bottom $\rightarrow 0$ and the top doesn't; quotient's limit dn.e. In this case, how fast is the top approaching 0 , compared to the bottom?
3. If one piece of a product $\rightarrow 0$ and the other piece is finite, product will $\rightarrow 0$; if one piece of a product $\rightarrow \infty$ and the other is non-zero, product $\rightarrow \pm \infty$. How fast is one term approaching 0 compared to rate at which other approaches ∞ ?
