Summary of Wednesday's Conclusions:

- Definition: A number c in the domain of a function f is called a critical number (or a critical point) of f if $f^{\prime}(c)=0$ or $f^{\prime}(c)$ is undefined.
- Theorem: Suppose that $f(c)$ is a local extremum (that is, is either a local min or a local max). Then c must be a critical number.
- If $f(x)$ has a local extremum at $x=c$, then f^{\prime} must be 0 or undefined, but just because f^{\prime} is zero or undefined doesn't guarantee that there's a local extremum at that point.

In Class Work

Find all critical numbers. Use graphing technology to determine whether each is a local minimum, local maximum, or neither.

1. $f(x)=x^{4}-3 x^{3}+2$
2. $f(x)=\sin (x) \cos (x)$ on $[0,2 \pi]$
3. $f(x)=x^{1 / 2}\left(x^{2}-4\right)^{3}$

Solutions:

1. $f(x)=x^{4}-3 x^{3}+2$

Need to find: where $f^{\prime}(x)=0$ and where $f^{\prime}(x)$ is undefined.

$$
f^{\prime}(x)=4 x^{3}-9 x^{2}
$$

$f^{\prime}(x)$ is a polynomial and so exists everywhere.

$$
\begin{aligned}
f^{\prime}(x)=0 & \Longrightarrow 4 x^{3}-9 x^{2}=0 \\
& \Longrightarrow x^{2}(4 x-9)=0 \\
& \Longrightarrow x=0 \text { or } x=9 / 4
\end{aligned}
$$

Thus the only critical numbers are $x=0$ and $x=9 / 4$. That is, the only places $f(x)$ can possibly have a local max or a local min is at $x=0$ or at $x=9 / 4$.

Solutions

1. (continued)

Solutions

2. $f(x)=\sin (x) \cos (x)$ on $[0,2 \pi]$

Need to find: where $f^{\prime}(x)=0$ and where $f^{\prime}(x)$ is undefined

$$
f^{\prime}(x)=\cos (x) \cos (x)+\sin (x)(-\sin (x))=\cos ^{2}(x)-\sin ^{2}(x)
$$

$f^{\prime}(x)$ is defined everywhere.
Where does $f^{\prime}(x)=0$?

$$
\begin{aligned}
f^{\prime}(x)=0 & \Longrightarrow \cos ^{2}(x)-\sin ^{2}(x) \\
& \Longrightarrow \cos ^{2}(x)=\sin ^{2}(x) \\
& \Longrightarrow \cos (x)= \pm \sin (x) \\
& \Longrightarrow x=\frac{\pi}{4}, x=\frac{3 \pi}{4}, x=\frac{5 \pi}{4}, x=\frac{7 \pi}{4}
\end{aligned}
$$

Thus the critical numbers on $[0,2 \pi]$ are $x=\frac{\pi}{4}, x=\frac{3 \pi}{4}, x=\frac{5 \pi}{4}, x=\frac{7 \pi}{4}$, and so the only points on the interval $[0,2 \pi]$ where $f(x)=\sin (x) \cos (x)$ could possibly have a local max or a local min are one of these four points,

Solutions

2. (continued)

3. $f(x)=x^{1 / 2}\left(x^{2}-4\right)^{3}$

Need to find: where $f^{\prime}(x)=0$ and where $f^{\prime}(x)$ is undefined

$$
\begin{aligned}
f^{\prime}(x) & =x^{1 / 2}\left(3\left(x^{2}-4\right)^{2}(2 x)\right)+\left(\frac{1}{2} x^{-1 / 2}\right)\left(x^{2}-4\right)^{3} \\
& =6 x^{3 / 2}\left(x^{2}-4\right)^{2}+\frac{1}{2 x^{1 / 2}}\left(x^{2}-4\right)^{3} \\
& =\frac{1}{2 x^{1 / 2}}\left(x^{2}-4\right)^{2}\left(12 x^{2}+\left(x^{2}-4\right)\right) \\
& =\frac{1}{2 x^{1 / 2}}\left(x^{2}-4\right)^{2}\left(13 x^{2}-4\right)
\end{aligned}
$$

$f^{\prime}(x)$ is undefined at $x=0$ (but $f(x)$ is defined there).
$f^{\prime}(x)=0$ at $x= \pm 2$ and at $x= \pm \frac{2}{\sqrt{13}}$
However: f is not defined for negative values of x.
Thus the critical numbers - the only places f can possibly hope to achieve a local max or local min - are at $x=0, x=2, x=\frac{2}{\sqrt{13}}$
3. (continued)

