Summary of Thursday's Results

- We call the highest point(s) ($c, f(c)$) over the interval I an absolute maximum over the interval I. Similarly, the lowest point(s) over the interval I is an absolute minimum.
- The EVT tells us that a continuous function f on a closed interval [a, b] must attain both an absolute maximum and an absolute minimum on that interval.
- The only way a function can attain an absolute extremum on a closed interval is if that point is either a local extremum or at one of the endpoints of the interval.
- We know that if f has a local extremum at $x=c$, then c must be a critical number (that is, $f^{\prime}(c)=0$ or $f^{\prime}(c)$ d.n.e.)

Summary of Thursday's Results

- We call the highest point(s) ($c, f(c)$) over the interval I an absolute maximum over the interval I. Similarly, the lowest point(s) over the interval / is an absolute minimum.
- The EVT tells us that a continuous function f on a closed interval $[a, b]$ must attain both an absolute maximum and an absolute minimum on that interval.
- The only way a function can attain an absolute extremum on a closed interval is if that point is either a local extremum or at one of the endpoints of the interval.
- We know that if f has a local extremum at $x=c$, then c must be a critical number (that is, $f^{\prime}(c)=0$ or $f^{\prime}(c)$ d.n.e.)
- Conclusion: If f is continuous on the closed interval $[a, b]$, then each of the absolute extrema of f must occur either at endpoint $x=a$, endpoint $x=b$, or at a critical number within (a, b).

To find where the absolute maximum and minimum values of a function $f(x)$ occur - and what they are - on an interval $[a, b]$:

- Because $[a, b]$ closed, the EVT \Longrightarrow an abs max and an abs min exist.
- Find $f^{\prime}(x)$.
- Find where the tangent line doesn't exist, is vertical, or is horizontal by finding the x-values where $f^{\prime}(x)$ doesn't exist, and also where $f^{\prime}(x)=0$. These are the critical numbers
- The absolute max and the absolute min each must occur at either an endpoint ($x=a$ or $x=b$), or at one of the critical numbers.
- Calculate f at $x=a, x=b$, and at each of the critical numbers.
- Compare values of f

The highest value of f you find must be the absolute maximum value, and it occurs at the x you input to find it.
The lowest value of f you find must be the absolute minimum value, and it occurs at the x you input to find it.

In Class Work

Find the absolute extrema of the given function on each indicated interval. If you have a graphing calculator available, check your results by looking at a graph.

1. $f(x)=x^{4}-8 x^{2}+2$ on (a) $[-3,1]$ and (b) $[-1,3]$
2. $f(x)=x^{2 / 3}(x-5)^{3}$ on (a) $[-1,1]$ and (b) $[-1,8]$

Solutions:

1. $f(x)=x^{4}-8 x^{2}+2$ on (a) $[-3,1]$ and (b) $[-1,3]$
(a) $[-3,1]$

- Critical Numbers: $f^{\prime}(x)=4 x^{3}-16 x$.
- f^{\prime} exists everywhere

$$
\begin{aligned}
f^{\prime}(x)=0 & \Longrightarrow 0=4 x^{3}-16 x \\
& \Longrightarrow x^{3}-4 x=0 \\
& \Longrightarrow x\left(x^{2}-4\right)=0 \\
& \Longrightarrow x=0, x=2, x=-2
\end{aligned}
$$

The critical numbers are $x=-2, x=0$, and $x=2$.

Solutions:

1. $f(x)=x^{4}-8 x^{2}+2$ on (a) $[-3,1]$ and (b) $[-1,3]$
(a) $[-3,1]$

- Critical Numbers: $x=0, x=2, x=-2$. Only -2 and 0 lie in this interval.
- Compute f :
- $f(-3)=(-3)^{4}-8(-3)^{2}+2=81-72+2=11$
- $f(-2)=(-2)^{4}-8(-2)^{2}+2=16-32+2=-14$
- $f(0)=0^{4}-8(0)^{2}+2=2$
- $f(1)=(1)^{4}-8(1)^{2}+2=1-8+2=-5$
- Compare:

On the interval $[-3,1], f$ attains an absolute maximum value of $y=11$ at $x=-3$ and an absolute mininum value of $y=-14$ at $x=-2$.

Solutions:

1. $f(x)=x^{4}-8 x^{2}+2$ on (a) $[-3,1]$ and (b) $[-1,3]$
(b) $[-1,3]$

- Critical Numbers: Same as in (a): $x=-2,0,2$. Only 0 and 2 lie in this interval.
- Compute f
- $f(-1)=(-1)^{4}-8(-1)^{2}+2=1-8+2=-5$
- $f(0)=2$
- $f(2)=2^{4}-8(2)^{2}+2=-14$
- $f(3)=3^{4}-8(3)^{2}+2=11$
- Compare:

On $[-1,3], f$ attains an absolute maximum value of $y=11$ at $x=3$ and an absolute mininum value of $y=-14$ at $x=2$.

Solutions:

2. $f(x)=x^{2 / 3}(x-5)^{3}$ on (a) $[-1,1]$ and (b) $[-1,8]$
(a) $[-1,1]$

- Critical Numbers

$$
\begin{aligned}
f^{\prime}(x) & =x^{2 / 3}\left[3(x-5)^{2}\right]+\frac{2}{3} x^{-1 / 3}(x-5)^{3} \\
& =\frac{1}{x^{1 / 3}}\left(x^{1}\left[3(x-5)^{2}\right]+\frac{2}{3}(x-5)^{3}\right) \\
& =\frac{(x-5)^{2}}{x^{1 / 3}}\left(3 x+\frac{2}{3}(x-5)\right) \\
& =\frac{(x-5)^{2}}{x^{1 / 3}}\left(3 x+\frac{2}{3} x-\frac{10}{3}\right) \\
& =\frac{(x-5)^{2}\left(\frac{11}{3} x-\frac{10}{3}\right)}{x^{1 / 3}}
\end{aligned}
$$

Solutions:

2. $f(x)=x^{2 / 3}(x-5)^{3}$ on (a) $[-1,1]$ and (b) $[-1,8]$
(a) $[-1,1]$

- Critical Numbers
- $f^{\prime}(x)=\frac{(x-5)^{2}\left(\frac{11}{3} x-\frac{10}{3}\right)}{x^{1 / 3}}$
- f^{\prime} does not exist at $x=0$, but f does
- $f^{\prime}=0$ when $x=5$ or when $\frac{11}{3} x=\frac{10}{3}$, that is when $x=\frac{10}{11}$.
- Thus the critical numbers are $x=0, \frac{10}{11}, 5$. Only $x=0$ and $x=10 / 11$ lie in this interval.

Solutions:

2. $f(x)=x^{2 / 3}(x-5)^{3}$ on (a) $[-1,1]$ and (b) $[-1,8]$
(a) $[-1,1]$

- Critical Numbers: $x=0, \frac{10}{11}, 5$. Only $x=0$ and $x=10 / 11$ lie in $[-1,1]$.
- Compute
- $f(-1)=\left((-1)^{2}\right)^{1 / 3}(-1-5)^{3}=(-6)^{3}=-216$
- $f(0)=(0)^{2 / 3}(0-5)^{3}=0$
- Using a calculator, $f(10 / 11) \approx-64.25$
- $f(1)=1^{2 / 3}(1-5)^{3}=(-4)^{3}=-64$
- Compare

On $[-1,1], f$ has absolute maximum value of 0 at $x=0$ and an an absolute mininum value of $y=-216$ at $x=-1$.

Solutions:

2. $f(x)=x^{2 / 3}(x-5)^{3}$ on (a) $[-1,1]$ and (b) $[-1,8]$
(b) $[-1,8]$

- Critical Numbers: Still $x=0, \frac{10}{11}, 5$; all lie in our interval.
- Compute
- $f(-1)=-216$
- $f(0)=0$
- $f(10 / 11) \approx-64.25$
- $f(5)=(5)^{2 / 3}(5-5)^{3}=0$
- $f(8)=(8)^{2 / 3}(8-5)^{3}=(2)^{2}(3)^{3}=(4)(27)=108$
- Compare

On $[-1,8], f$ has absolute maximum value of 108 at $x=8$ and an an absolute mininum value of -216 at $x=-1$.

Reading Question \#2: Windows matter!

g on $[-10,10]$

g on $[-1,1]$

Example: Find all local extrema of $y=x e^{-2 x}$.

First, look at the graph using the standard graphing calculator interval of [-10, 10]:

Looks like it might be always increasing, becoming asymptotic to $y=0$.

Example: Find all local extrema of $y=x e^{-2 x}$.

Now that we know it has a local max at $x=1 / 2$, we know roughly where to zoom in- try $x \in[-1,2]$

