Recall:

- Local extrema can only occur where $f^{\prime}(x)=0$ or where $f^{\prime}(x)$ d.n.e. (However, $f^{\prime}(x)$ can be 0 or not exist at points that are not extrema.)
- $f(x)$ increases to the left of a local max and decreases to the right. $f(x)$ decreases to the left of a local min and increases to the right.
- Let $f(x)$ be a continuous function.

$$
\begin{aligned}
f(x) \text { is increasing } & \Longleftrightarrow f^{\prime}(x)>0 \\
f(x) \text { is decreasing } & \Longleftrightarrow f^{\prime}(x)<0
\end{aligned}
$$

- $\therefore f^{\prime}(x)$ switches from + on the left of a local max to - on the right $\& f^{\prime}(x)$ switches from - on the left of a local min to + on the right.

First Derivative Test:

Suppose that f is continuous and that c is a critical number for f.

- If $f^{\prime}(x)>0$ on some interval (a, c) and $f^{\prime}(x)<0$ on some interval (c, b), then f has a local maximum at $x=c$.
- If $f^{\prime}(x)<0$ on some interval (a, c) and $f^{\prime}(x)>0$ on some interval (c, b), then f has a local minimum at $x=c$.
- If $f^{\prime}(x)$ has the same sign on some interval (a, c) and on some interval (c, b), then f does not have a local extremum at $x=c$.

Example: Find all local extrema of $y=x e^{-2 x}$.

Look at the graph on the standard graphing calculator window $[-10,10]$:

It looks as though the function is always increasing, becoming asymptotic to $y=0$ as $x \rightarrow \infty$

Example: Find all local extrema of $y=x e^{-2 x}$.

Now that we know it has a local max at $x=1 / 2$, we know roughly where to zoom in- try $x \in[-1,2]$

In Class Work

1. Find (by hand) the intervals where the function is increasing and decreasing. Use this information (and a few key points) to sketch a graph. If you have access to graphing technology, then verify your results.
(a) $y=x^{3}-3 x+2$
(b) $y=(x+1)^{2 / 3}$
2. For the function $f(x)=(x+1)^{2} e^{x}$, find (by hand) all critical numbers and then use the First Derivative Test to classify each as the location of a local maximum, local minimum, or neither.

Solutions:

1. (a) $y=x^{3}-3 x+2$

- Locate Critical Numbers

$$
y^{\prime}=3 x^{2}-3 \Rightarrow y^{\prime}=3\left(x^{2}-1\right)=3(x-1)(x+1)
$$

- y^{\prime} exists everywhere
- $y^{\prime}=0$ at $x=-1, x=1$.

Thus $x=-1$ and $x=1$ are the only two critical numbers.

- Find where f is increasing, decreasing:

$$
f^{\prime}(-2)=3(-)(-)>0 \quad f^{\prime}(0)=3(-)(+)<0 \quad f^{\prime}(2)=3(+)(+)>0
$$

Solutions:

1. (b) $y=(x+1)^{2 / 3}$

- Locate Critical Numbers:

$$
y^{\prime}=\frac{2}{3}(x+1)^{-1 / 3}=\frac{2}{3(x+1)^{1 / 3}}
$$

- y^{\prime} does not exist at $x=-1$ (but y does)
- $y^{\prime} \neq 0$

Thus $x=-1$ is the only critical number.

- Find where f is increasing and decreasing:

$$
f^{\prime}(-2)=\frac{2}{(+)(-)}<0 \quad f^{\prime}(0)=\frac{2}{(+)(+)}>0
$$

2. $y=(x+1)^{2} e^{x}$

- Locate Critical Numbers:

$$
\begin{aligned}
y^{\prime} & =(x+1)^{2} e^{x}+2(x+1) e^{x} \\
& =(x+1) e^{x}((x+1)+2) \\
& =(x+1)(x+3) e^{x}
\end{aligned}
$$

- y^{\prime} exists everywhere
- $y^{\prime}=0$ when $x=-1$ and when $x=-3$.

Critical numbers: $x=-1$ and $x=-3$.

- Find where f is increasing and decreasing:
- $f^{\prime}(x)=(x+1)(x+3) e^{x}$
- $f^{\prime}(-4)=(-)(-)(+)>0, f^{\prime}(-2)=(-)(+)(+)<0$, $f^{\prime}(0)=(+)(+)(+)>0$

Solutions:

- Conclude:

y has a local maximum at $x=-3$ and a local minimum at $x=-1$

- Verify:

Recall from Earlier Today:

Example: $f(x)=x^{3}-3 x+2$
By finding that $f^{\prime}(x)=3 x^{2}-3$, you found that the critical numbers are $x=-1$ and $x=1$, and that

But how is it curved? For that, we need concavity.

Example, continued

