#### **Recall:**

- Local extrema can *only* occur where f'(x) = 0 or where f'(x) d.n.e. (However, f'(x) can be 0 or not exist at points that are *not* extrema.)
- ▶ f(x) increases to the left of a local max and decreases to the right. f(x) decreases to the left of a local min and increases to the right.
- Let f(x) be a continuous function.

$$f(x)$$
 is increasing  $\iff f'(x) > 0$   
 $f(x)$  is decreasing  $\iff f'(x) < 0$ 

ightharpoonup : f'(x) switches from + on the left of a local max to - on the right &f'(x) switches from - on the left of a local min to + on the right.

#### First Derivative Test:

Suppose that f is continuous and that c is a critical number for f.

- ▶ If f'(x) > 0 on some interval (a, c) and f'(x) < 0 on some interval (c,b), then f has a local maximum at x=c.
- If f'(x) < 0 on some interval (a, c) and f'(x) > 0 on some interval (c,b), then f has a local minimum at x=c.
- If f'(x) has the same sign on some interval (a, c) and on some interval (c, b), then f does not have a local extremum at x = c.

# **Example:** Find all local extrema of $y = xe^{-2x}$ .

Look at the graph on the standard graphing calculator window [-10, 10]:



It looks as though the function is always increasing, becoming asymptotic

to 
$$y = 0$$
 as  $x \to \infty$ 
Math 101-Calculus 1 (Sklensky)

October 24, 2011

3 / 11

## **Example:** Find all local extrema of $y = xe^{-2x}$ .

Now that we know it has a local max at x=1/2, we know roughly where to zoom in- try  $x\in [-1,2]$ 



#### In Class Work

1. Find (by hand) the intervals where the function is increasing and decreasing. Use this information (and a few key points) to sketch a graph. If you have access to graphing technology, then verify your results.

(a) 
$$y = x^3 - 3x + 2$$

(b) 
$$y = (x+1)^{2/3}$$

2. For the function  $f(x) = (x+1)^2 e^x$ , find (by hand) all critical numbers and then use the First Derivative Test to classify each as the location of a local maximum, local minimum, or neither.

5 / 11

#### **Solutions:**

1. (a) 
$$y = x^3 - 3x + 2$$

Locate Critical Numbers

$$y' = 3x^2 - 3 \Rightarrow y' = 3(x^2 - 1) = 3(x - 1)(x + 1).$$

- ▶ y' exists everywhere
- y' = 0 at x = -1, x = 1.

Thus x = -1 and x = 1 are the only two critical numbers.

▶ Find where *f* is increasing, decreasing:

$$f'(-2) = 3(-)(-) > 0$$
  $f'(0) = 3(-)(+) < 0$   $f'(2) = 3(+)(+) > 0$ 



4□ > <□ > <□ > <□ > <□ >

6 / 11

#### **Solutions:**

- 1. (b)  $y = (x+1)^{2/3}$ 
  - ► Locate Critical Numbers:

$$y' = \frac{2}{3}(x+1)^{-1/3} = \frac{2}{3(x+1)^{1/3}}.$$

- y' does not exist at x = -1 (but y does)
- $\mathbf{v}' \neq \mathbf{0}$

Thus x = -1 is the only critical number.

► Find where *f* is increasing and decreasing:

$$f'(-2) = \frac{2}{(+)(-)} < 0$$
  $f'(0) = \frac{2}{(+)(+)} > 0$ 



2. 
$$y = (x+1)^2 e^x$$

► Locate Critical Numbers:

$$y' = (x+1)^{2}e^{x} + 2(x+1)e^{x}$$
$$= (x+1)e^{x}((x+1)+2)$$
$$= (x+1)(x+3)e^{x}$$

- ▶ y' exists everywhere
- y' = 0 when x = -1 and when x = -3.

Critical numbers: x = -1 and x = -3.

- ► Find where *f* is increasing and decreasing:
  - $f'(x) = (x+1)(x+3)e^x$
  - f'(-4) = (-)(-)(+) > 0, f'(-2) = (-)(+)(+) < 0,f'(0) = (+)(+)(+) > 0



4 □ > 4 ⓓ > 4 Ủ > 4 Ủ > 3

Math 101-Calculus 1 (Sklensky)

### **Solutions:**



- ► Conclude:
  - y has a local maximum at x=-3 and a local minimum at x=-1
- Verify:



### **Recall from Earlier Today:**

**Example:** 
$$f(x) = x^3 - 3x + 2$$

By finding that  $f'(x) = 3x^2 - 3$ , you found that the critical numbers are x = -1 and x = 1, and that



But how is it curved? For that, we need concavity.

## **Example, continued**

